IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v455y2008i7212d10.1038_nature07292.html
   My bibliography  Save this article

Frequency-modulated nuclear localization bursts coordinate gene regulation

Author

Listed:
  • Long Cai

    (Howard Hughes Medical Institute, California Institute of Technology, M/C 114-96, Pasadena, California 91125, USA)

  • Chiraj K. Dalal

    (Howard Hughes Medical Institute, California Institute of Technology, M/C 114-96, Pasadena, California 91125, USA)

  • Michael B. Elowitz

    (Howard Hughes Medical Institute, California Institute of Technology, M/C 114-96, Pasadena, California 91125, USA)

Abstract

In yeast, the transcription factor Crz1 is dephosphorylated and translocates into the nucleus in response to extracellular calcium. Here we show, using time-lapse microscopy, that Crz1 exhibits short bursts of nuclear localization (typically lasting 2 min) that occur stochastically in individual cells and propagate to the expression of downstream genes. Strikingly, calcium concentration controls the frequency, but not the duration, of localization bursts. Using an analytic model, we also show that this frequency modulation of bursts ensures proportional expression of multiple target genes across a wide dynamic range of expression levels, independent of promoter characteristics. We experimentally confirm this theory with natural and synthetic Crz1 target promoters. Another stress-response transcription factor, Msn2, exhibits similar, but largely uncorrelated, localization bursts under calcium stress suggesting that frequency-modulation regulation of localization bursts may be a general control strategy used by the cell to coordinate multi-gene responses to external signals.

Suggested Citation

  • Long Cai & Chiraj K. Dalal & Michael B. Elowitz, 2008. "Frequency-modulated nuclear localization bursts coordinate gene regulation," Nature, Nature, vol. 455(7212), pages 485-490, September.
  • Handle: RePEc:nat:nature:v:455:y:2008:i:7212:d:10.1038_nature07292
    DOI: 10.1038/nature07292
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature07292
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature07292?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vera Bettenworth & Simon Vliet & Bartosz Turkowyd & Annika Bamberger & Heiko Wendt & Matthew McIntosh & Wieland Steinchen & Ulrike Endesfelder & Anke Becker, 2022. "Frequency modulation of a bacterial quorum sensing response," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Gabriele Micali & Gerardo Aquino & David M Richards & Robert G Endres, 2015. "Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-21, June.
    3. Andreas Doncic & Umut Eser & Oguzhan Atay & Jan M Skotheim, 2013. "An Algorithm to Automate Yeast Segmentation and Tracking," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-11, March.
    4. Giorgos Minas & Dan J Woodcock & Louise Ashall & Claire V Harper & Michael R H White & David A Rand, 2020. "Multiplexing information flow through dynamic signalling systems," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-18, August.
    5. Marc Weber & Javier Buceta, 2013. "Stochastic Stabilization of Phenotypic States: The Genetic Bistable Switch as a Case Study," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.
    6. C Caranica & A Al-Omari & Z Deng & J Griffith & R Nilsen & L Mao & J Arnold & H-B Schüttler, 2018. "Ensemble methods for stochastic networks with special reference to the biological clock of Neurospora crassa," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-28, May.
    7. Jing Kang & Bing Xu & Ye Yao & Wei Lin & Conor Hennessy & Peter Fraser & Jianfeng Feng, 2011. "A Dynamical Model Reveals Gene Co-Localizations in Nucleus," PLOS Computational Biology, Public Library of Science, vol. 7(7), pages 1-16, July.
    8. Joachim Almquist & Loubna Bendrioua & Caroline Beck Adiels & Mattias Goksör & Stefan Hohmann & Mats Jirstrand, 2015. "A Nonlinear Mixed Effects Approach for Modeling the Cell-To-Cell Variability of Mig1 Dynamics in Yeast," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-32, April.
    9. Ziya Kalay & Takahiro K Fujiwara & Akihiro Kusumi, 2012. "Confining Domains Lead to Reaction Bursts: Reaction Kinetics in the Plasma Membrane," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-8, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:455:y:2008:i:7212:d:10.1038_nature07292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.