IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0030092.html
   My bibliography  Save this article

Predictive Modeling of Signaling Crosstalk during C. elegans Vulval Development

Author

Listed:
  • Jasmin Fisher
  • Nir Piterman
  • Alex Hajnal
  • Thomas A Henzinger

Abstract

Caenorhabditis elegans vulval development provides an important paradigm for studying the process of cell fate determination and pattern formation during animal development. Although many genes controlling vulval cell fate specification have been identified, how they orchestrate themselves to generate a robust and invariant pattern of cell fates is not yet completely understood. Here, we have developed a dynamic computational model incorporating the current mechanistic understanding of gene interactions during this patterning process. A key feature of our model is the inclusion of multiple modes of crosstalk between the epidermal growth factor receptor (EGFR) and LIN-12/Notch signaling pathways, which together determine the fates of the six vulval precursor cells (VPCs). Computational analysis, using the model-checking technique, provides new biological insights into the regulatory network governing VPC fate specification and predicts novel negative feedback loops. In addition, our analysis shows that most mutations affecting vulval development lead to stable fate patterns in spite of variations in synchronicity between VPCs. Computational searches for the basis of this robustness show that a sequential activation of the EGFR-mediated inductive signaling and LIN-12 / Notch-mediated lateral signaling pathways is key to achieve a stable cell fate pattern. We demonstrate experimentally a time-delay between the activation of the inductive and lateral signaling pathways in wild-type animals and the loss of sequential signaling in mutants showing unstable fate patterns; thus, validating two key predictions provided by our modeling work. The insights gained by our modeling study further substantiate the usefulness of executing and analyzing mechanistic models to investigate complex biological behaviors.: Systems biology aims to gain a system-level understanding of living systems. To achieve such an understanding, we need to establish the methodologies and techniques to understand biological systems in their full complexity. One such attempt is to use methods designed for the construction and analysis of complex computerized systems to model biological systems. Describing mechanistic models in biology in a dynamic and executable language offers great advantages for representing time and parallelism, which are important features of biological behavior. In addition, automatic analysis methods can be used to ensure the consistency of computational models with biological data on which they are based. We have developed a dynamic computational model describing the current mechanistic understanding of cell fate determination during C. elegans vulval development, which provides an important paradigm for studying animal development. Our model is realistic, reproduces up-to-date experimental observations, allows in silico experimentation, and is analyzable by automatic tools. Analysis of our model provides new insights into the temporal aspects of the cell fate patterning process and predicts new modes of interaction between the signaling pathways involved. These biological insights, which were also validated experimentally, further substantiate the usefulness of dynamic computational models to investigate complex biological behaviors.

Suggested Citation

  • Jasmin Fisher & Nir Piterman & Alex Hajnal & Thomas A Henzinger, 2007. "Predictive Modeling of Signaling Crosstalk during C. elegans Vulval Development," PLOS Computational Biology, Public Library of Science, vol. 3(5), pages 1-12, May.
  • Handle: RePEc:plo:pcbi00:0030092
    DOI: 10.1371/journal.pcbi.0030092
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030092
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0030092&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0030092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. U. Alon & M. G. Surette & N. Barkai & S. Leibler, 1999. "Robustness in bacterial chemotaxis," Nature, Nature, vol. 397(6715), pages 168-171, January.
    2. George von Dassow & Eli Meir & Edwin M. Munro & Garrett M. Odell, 2000. "The segment polarity network is a robust developmental module," Nature, Nature, vol. 406(6792), pages 188-192, July.
    3. N. Barkai & S. Leibler, 1997. "Robustness in simple biochemical networks," Nature, Nature, vol. 387(6636), pages 913-917, June.
    4. Daniel D. Shaye & Iva Greenwald, 2002. "Endocytosis-mediated downregulation of LIN-12/Notch upon Ras activation in Caenorhabditis elegans," Nature, Nature, vol. 420(6916), pages 686-690, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Lobo & Michael Levin, 2015. "Inferring Regulatory Networks from Experimental Morphological Phenotypes: A Computational Method Reverse-Engineers Planarian Regeneration," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-28, June.
    2. Karan Mangla & David L Dill & Mark A Horowitz, 2010. "Timing Robustness in the Budding and Fission Yeast Cell Cycles," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-7, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeina Shreif & Vipul Periwal, 2014. "A Network Characteristic That Correlates Environmental and Genetic Robustness," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-23, February.
    2. Guillermo Rodrigo & Santiago F Elena, 2011. "Structural Discrimination of Robustness in Transcriptional Feedforward Loops for Pattern Formation," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-7, February.
    3. Kazunari Kaizu & Hisao Moriya & Hiroaki Kitano, 2010. "Fragilities Caused by Dosage Imbalance in Regulation of the Budding Yeast Cell Cycle," PLOS Genetics, Public Library of Science, vol. 6(4), pages 1-12, April.
    4. Önder Kartal & Oliver Ebenhöh, 2009. "Ground State Robustness as an Evolutionary Design Principle in Signaling Networks," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-8, December.
    5. Jae Kyoung Kim & Trachette L Jackson, 2013. "Mechanisms That Enhance Sustainability of p53 Pulses," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-11, June.
    6. Junjie Luo & Jun Wang & Ting Martin Ma & Zhirong Sun, 2010. "Reverse Engineering of Bacterial Chemotaxis Pathway via Frequency Domain Analysis," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-8, March.
    7. Jinlong Yuan & Lei Wang & Xu Zhang & Enmin Feng & Hongchao Yin & Zhilong Xiu, 2015. "Parameter identification for a nonlinear enzyme-catalytic dynamic system with time-delays," Journal of Global Optimization, Springer, vol. 62(4), pages 791-810, August.
    8. Adel Dayarian & Madalena Chaves & Eduardo D Sontag & Anirvan M Sengupta, 2009. "Shape, Size, and Robustness: Feasible Regions in the Parameter Space of Biochemical Networks," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-12, January.
    9. Miri Adler & Avi Mayo & Uri Alon, 2014. "Logarithmic and Power Law Input-Output Relations in Sensory Systems with Fold-Change Detection," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-14, August.
    10. Deyan Luan & Michael Zai & Jeffrey D Varner, 2007. "Computationally Derived Points of Fragility of a Human Cascade Are Consistent with Current Therapeutic Strategies," PLOS Computational Biology, Public Library of Science, vol. 3(7), pages 1-13, July.
    11. Kirstin Meyer & Nicholas C. Lammers & Lukasz J. Bugaj & Hernan G. Garcia & Orion D. Weiner, 2023. "Optogenetic control of YAP reveals a dynamic communication code for stem cell fate and proliferation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    12. Gabriele Micali & Gerardo Aquino & David M Richards & Robert G Endres, 2015. "Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-21, June.
    13. Diana Clausznitzer & Olga Oleksiuk & Linda Løvdok & Victor Sourjik & Robert G Endres, 2010. "Chemotactic Response and Adaptation Dynamics in Escherichia coli," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-11, May.
    14. Stefano Ciliberti & Olivier C Martin & Andreas Wagner, 2007. "Robustness Can Evolve Gradually in Complex Regulatory Gene Networks with Varying Topology," PLOS Computational Biology, Public Library of Science, vol. 3(2), pages 1-10, February.
    15. Nikita Vladimirov & Linda Løvdok & Dirk Lebiedz & Victor Sourjik, 2008. "Dependence of Bacterial Chemotaxis on Gradient Shape and Adaptation Rate," PLOS Computational Biology, Public Library of Science, vol. 4(12), pages 1-17, December.
    16. Robert J Prill & Pablo A Iglesias & Andre Levchenko, 2005. "Dynamic Properties of Network Motifs Contribute to Biological Network Organization," PLOS Biology, Public Library of Science, vol. 3(11), pages 1-1, October.
    17. Burton W Andrews & Tau-Mu Yi & Pablo A Iglesias, 2006. "Optimal Noise Filtering in the Chemotactic Response of Escherichia coli," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-12, November.
    18. Diana Clausznitzer & Gabriele Micali & Silke Neumann & Victor Sourjik & Robert G Endres, 2014. "Predicting Chemical Environments of Bacteria from Receptor Signaling," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-14, October.
    19. Robert M Cooper & Ned S Wingreen & Edward C Cox, 2012. "An Excitable Cortex and Memory Model Successfully Predicts New Pseudopod Dynamics," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-12, March.
    20. Robyn P. Araujo & Lance A. Liotta, 2023. "Universal structures for adaptation in biochemical reaction networks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0030092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.