IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002094.html
   My bibliography  Save this article

A Dynamical Model Reveals Gene Co-Localizations in Nucleus

Author

Listed:
  • Jing Kang
  • Bing Xu
  • Ye Yao
  • Wei Lin
  • Conor Hennessy
  • Peter Fraser
  • Jianfeng Feng

Abstract

Co-localization of networks of genes in the nucleus is thought to play an important role in determining gene expression patterns. Based upon experimental data, we built a dynamical model to test whether pure diffusion could account for the observed co-localization of genes within a defined subnuclear region. A simple standard Brownian motion model in two and three dimensions shows that preferential co-localization is possible for co-regulated genes without any direct interaction, and suggests the occurrence may be due to a limitation in the number of available transcription factors. Experimental data of chromatin movements demonstrates that fractional rather than standard Brownian motion is more appropriate to model gene mobilizations, and we tested our dynamical model against recent static experimental data, using a sub-diffusion process by which the genes tend to colocalize more easily. Moreover, in order to compare our model with recently obtained experimental data, we studied the association level between genes and factors, and presented data supporting the validation of this dynamic model. As further applications of our model, we applied it to test against more biological observations. We found that increasing transcription factor number, rather than factory number and nucleus size, might be the reason for decreasing gene co-localization. In the scenario of frequency- or amplitude-modulation of transcription factors, our model predicted that frequency-modulation may increase the co-localization between its targeted genes. Author Summary: Transcription is a fundamental step in gene expression, yet it remains poorly understood at cellular level. Textbooks are full of descriptions of promoter-bound transcription factors recruiting RNA polymerase, which initiates transcription before sliding along the transcription unit. However, increasing evidence supports the view that the DNA template bound with transcription factors slides through a relatively immobile RNA polymerase at discrete nuclear sites (known as transcription factories), rather than RNA polymerase sliding along DNA template. Based on this transcription factory model, we build a virtual space in which genes and transcription factors move randomly while transcription factories are immobile. We find that under a large number of parameter ranges, this simple dynamical model is valid for a number of experimental observations. Moreover, we suggest the occurrence of gene co-localization might be mainly due to limited numbers of transcription factors, rather than other factors such as nucleus size or transcription factory number. This work offers insight into the general principles of regulation of transcription and gene expression by simulating the translocation of transcriptional units (genes and transcription factors) using purely random diffusion processes that result in non-random organization of co-regulated genes.

Suggested Citation

  • Jing Kang & Bing Xu & Ye Yao & Wei Lin & Conor Hennessy & Peter Fraser & Jianfeng Feng, 2011. "A Dynamical Model Reveals Gene Co-Localizations in Nucleus," PLOS Computational Biology, Public Library of Science, vol. 7(7), pages 1-16, July.
  • Handle: RePEc:plo:pcbi00:1002094
    DOI: 10.1371/journal.pcbi.1002094
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002094
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002094&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Long Cai & Chiraj K. Dalal & Michael B. Elowitz, 2008. "Frequency-modulated nuclear localization bursts coordinate gene regulation," Nature, Nature, vol. 455(7212), pages 485-490, September.
    2. Peter Fraser & Wendy Bickmore, 2007. "Nuclear organization of the genome and the potential for gene regulation," Nature, Nature, vol. 447(7143), pages 413-417, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriele Micali & Gerardo Aquino & David M Richards & Robert G Endres, 2015. "Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Doncic & Umut Eser & Oguzhan Atay & Jan M Skotheim, 2013. "An Algorithm to Automate Yeast Segmentation and Tracking," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-11, March.
    2. Markus J. Buehler & Theodor Ackbarow, 2008. "Nanomechanical strength mechanisms of hierarchical biological materials and tissues," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 11(6), pages 595-607.
    3. Joachim Almquist & Loubna Bendrioua & Caroline Beck Adiels & Mattias Goksör & Stefan Hohmann & Mats Jirstrand, 2015. "A Nonlinear Mixed Effects Approach for Modeling the Cell-To-Cell Variability of Mig1 Dynamics in Yeast," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-32, April.
    4. Ziya Kalay & Takahiro K Fujiwara & Akihiro Kusumi, 2012. "Confining Domains Lead to Reaction Bursts: Reaction Kinetics in the Plasma Membrane," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-8, March.
    5. Vera Bettenworth & Simon Vliet & Bartosz Turkowyd & Annika Bamberger & Heiko Wendt & Matthew McIntosh & Wieland Steinchen & Ulrike Endesfelder & Anke Becker, 2022. "Frequency modulation of a bacterial quorum sensing response," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Gabriele Micali & Gerardo Aquino & David M Richards & Robert G Endres, 2015. "Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-21, June.
    7. Ramya Raviram & Pedro P Rocha & Christian L Müller & Emily R Miraldi & Sana Badri & Yi Fu & Emily Swanzey & Charlotte Proudhon & Valentina Snetkova & Richard Bonneau & Jane A Skok, 2016. "4C-ker: A Method to Reproducibly Identify Genome-Wide Interactions Captured by 4C-Seq Experiments," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-23, March.
    8. Antonio Scialdone & Mario Nicodemi, 2008. "Mechanics and Dynamics of X-Chromosome Pairing at X Inactivation," PLOS Computational Biology, Public Library of Science, vol. 4(12), pages 1-7, December.
    9. Vesa Aho & Sami Salminen & Salla Mattola & Alka Gupta & Felix Flomm & Beate Sodeik & Jens B Bosse & Maija Vihinen-Ranta, 2021. "Infection-induced chromatin modifications facilitate translocation of herpes simplex virus capsids to the inner nuclear membrane," PLOS Pathogens, Public Library of Science, vol. 17(12), pages 1-20, December.
    10. C Caranica & A Al-Omari & Z Deng & J Griffith & R Nilsen & L Mao & J Arnold & H-B Schüttler, 2018. "Ensemble methods for stochastic networks with special reference to the biological clock of Neurospora crassa," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-28, May.
    11. Giorgos Minas & Dan J Woodcock & Louise Ashall & Claire V Harper & Michael R H White & David A Rand, 2020. "Multiplexing information flow through dynamic signalling systems," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-18, August.
    12. Marc Weber & Javier Buceta, 2013. "Stochastic Stabilization of Phenotypic States: The Genetic Bistable Switch as a Case Study," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.