Author
Listed:
- Farzad Farkhooi
- Anja Froese
- Eilif Muller
- Randolf Menzel
- Martin P Nawrot
Abstract
Most neurons in peripheral sensory pathways initially respond vigorously when a preferred stimulus is presented, but adapt as stimulation continues. It is unclear how this phenomenon affects stimulus coding in the later stages of sensory processing. Here, we show that a temporally sparse and reliable stimulus representation develops naturally in sequential stages of a sensory network with adapting neurons. As a modeling framework we employ a mean-field approach together with an adaptive population density treatment, accompanied by numerical simulations of spiking neural networks. We find that cellular adaptation plays a critical role in the dynamic reduction of the trial-by-trial variability of cortical spike responses by transiently suppressing self-generated fast fluctuations in the cortical balanced network. This provides an explanation for a widespread cortical phenomenon by a simple mechanism. We further show that in the insect olfactory system cellular adaptation is sufficient to explain the emergence of the temporally sparse and reliable stimulus representation in the mushroom body. Our results reveal a generic, biophysically plausible mechanism that can explain the emergence of a temporally sparse and reliable stimulus representation within a sequential processing architecture.Author Summary: Many lines of evidence suggest that few spikes carry the relevant stimulus information at later stages of sensory processing. Yet mechanisms for the emergence of a robust and temporally sparse sensory representation remain elusive. Here, we introduce an idea in which a temporal sparse and reliable stimulus representation develops naturally in spiking networks. It combines principles of signal propagation with the commonly observed mechanism of neuronal firing rate adaptation. Using a stringent numerical and mathematical approach, we show how a dense rate code at the periphery translates into a temporal sparse representation in the cortical network. At the same time, it dynamically suppresses trial-by-trial variability, matching experimental observations in sensory cortices. Computational modelling of the insects olfactory pathway suggests that the same principle underlies the prominent example of temporal sparse coding in the mushroom body. Our results reveal a computational principle that relates neuronal firing rate adaptation to temporal sparse coding and variability suppression in nervous systems.
Suggested Citation
Farzad Farkhooi & Anja Froese & Eilif Muller & Randolf Menzel & Martin P Nawrot, 2013.
"Cellular Adaptation Facilitates Sparse and Reliable Coding in Sensory Pathways,"
PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-14, October.
Handle:
RePEc:plo:pcbi00:1003251
DOI: 10.1371/journal.pcbi.1003251
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003251. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.