IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v412y2001i6849d10.1038_35090500.html
   My bibliography  Save this article

Efficiency and ambiguity in an adaptive neural code

Author

Listed:
  • Adrienne L. Fairhall

    (NEC Research Institute)

  • Geoffrey D. Lewen

    (NEC Research Institute)

  • William Bialek

    (NEC Research Institute)

  • Robert R. de Ruyter van Steveninck

    (NEC Research Institute)

Abstract

We examine the dynamics of a neural code in the context of stimuli whose statistical properties are themselves evolving dynamically. Adaptation to these statistics occurs over a wide range of timescales—from tens of milliseconds to minutes. Rapid components of adaptation serve to optimize the information that action potentials carry about rapid stimulus variations within the local statistical ensemble, while changes in the rate and statistics of action-potential firing encode information about the ensemble itself, thus resolving potential ambiguities. The speed with which information is optimized and ambiguities are resolved approaches the physical limit imposed by statistical sampling and noise.

Suggested Citation

  • Adrienne L. Fairhall & Geoffrey D. Lewen & William Bialek & Robert R. de Ruyter van Steveninck, 2001. "Efficiency and ambiguity in an adaptive neural code," Nature, Nature, vol. 412(6849), pages 787-792, August.
  • Handle: RePEc:nat:nature:v:412:y:2001:i:6849:d:10.1038_35090500
    DOI: 10.1038/35090500
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35090500
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35090500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Skander Mensi & Olivier Hagens & Wulfram Gerstner & Christian Pozzorini, 2016. "Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-38, February.
    2. Toshiyuki Ishii & Toshihiko Hosoya, 2020. "Interspike intervals within retinal spike bursts combinatorially encode multiple stimulus features," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-30, November.
    3. Richard Naud & Wulfram Gerstner, 2012. "Coding and Decoding with Adapting Neurons: A Population Approach to the Peri-Stimulus Time Histogram," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-14, October.
    4. Christian E Stilp & Keith R Kluender, 2012. "Efficient Coding and Statistically Optimal Weighting of Covariance among Acoustic Attributes in Novel Sounds," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-13, January.
    5. Jonathan Rubin & Nachum Ulanovsky & Israel Nelken & Naftali Tishby, 2016. "The Representation of Prediction Error in Auditory Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-28, August.
    6. Noga Mosheiff & Haggai Agmon & Avraham Moriel & Yoram Burak, 2017. "An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-19, June.
    7. J. Gerard Wolff, 2019. "Information Compression as a Unifying Principle in Human Learning, Perception, and Cognition," Complexity, Hindawi, vol. 2019, pages 1-38, February.
    8. Jonathan Schaffner & Sherry Dongqi Bao & Philippe N. Tobler & Todd A. Hare & Rafael Polania, 2023. "Sensory perception relies on fitness-maximizing codes," Nature Human Behaviour, Nature, vol. 7(7), pages 1135-1151, July.
    9. Sungho Hong & Brian Nils Lundstrom & Adrienne L Fairhall, 2008. "Intrinsic Gain Modulation and Adaptive Neural Coding," PLOS Computational Biology, Public Library of Science, vol. 4(7), pages 1-11, July.
    10. David D. Woods, 2018. "The theory of graceful extensibility: basic rules that govern adaptive systems," Environment Systems and Decisions, Springer, vol. 38(4), pages 433-457, December.
    11. Braden A W Brinkman & Alison I Weber & Fred Rieke & Eric Shea-Brown, 2016. "How Do Efficient Coding Strategies Depend on Origins of Noise in Neural Circuits?," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-34, October.
    12. Corentin Massot & Adam D Schneider & Maurice J Chacron & Kathleen E Cullen, 2012. "The Vestibular System Implements a Linear–Nonlinear Transformation In Order to Encode Self-Motion," PLOS Biology, Public Library of Science, vol. 10(7), pages 1-20, July.
    13. Klaus Wimmer & K Jannis Hildebrandt & R Matthias Hennig & Klaus Obermayer, 2008. "Adaptation and Selective Information Transmission in the Cricket Auditory Neuron AN2," PLOS Computational Biology, Public Library of Science, vol. 4(9), pages 1-18, September.
    14. Martinez-Saito, Mario, 2022. "Discrete scaling and criticality in a chain of adaptive excitable integrators," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:412:y:2001:i:6849:d:10.1038_35090500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.