IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004266.html
   My bibliography  Save this article

Asynchronous Rate Chaos in Spiking Neuronal Circuits

Author

Listed:
  • Omri Harish
  • David Hansel

Abstract

The brain exhibits temporally complex patterns of activity with features similar to those of chaotic systems. Theoretical studies over the last twenty years have described various computational advantages for such regimes in neuronal systems. Nevertheless, it still remains unclear whether chaos requires specific cellular properties or network architectures, or whether it is a generic property of neuronal circuits. We investigate the dynamics of networks of excitatory-inhibitory (EI) spiking neurons with random sparse connectivity operating in the regime of balance of excitation and inhibition. Combining Dynamical Mean-Field Theory with numerical simulations, we show that chaotic, asynchronous firing rate fluctuations emerge generically for sufficiently strong synapses. Two different mechanisms can lead to these chaotic fluctuations. One mechanism relies on slow I-I inhibition which gives rise to slow subthreshold voltage and rate fluctuations. The decorrelation time of these fluctuations is proportional to the time constant of the inhibition. The second mechanism relies on the recurrent E-I-E feedback loop. It requires slow excitation but the inhibition can be fast. In the corresponding dynamical regime all neurons exhibit rate fluctuations on the time scale of the excitation. Another feature of this regime is that the population-averaged firing rate is substantially smaller in the excitatory population than in the inhibitory population. This is not necessarily the case in the I-I mechanism. Finally, we discuss the neurophysiological and computational significance of our results.Author Summary: Cortical circuits exhibit complex temporal patterns of spiking and are exquisitely sensitive to small perturbations in their ongoing activity. These features are all suggestive of an underlying chaotic dynamics. Theoretical works have indicated that a rich dynamical reservoir can endow neuronal circuits with remarkable computational capabilities. Nevertheless, the mechanisms underlying chaos in circuits of spiking neurons remain unknown. We combine analytical calculations and numerical simulations to investigate this fundamental issue. Our key result is that chaotic firing rate fluctuations on the time scales of the synaptic dynamics emerge generically from the network collective dynamics. Our results pave the way in the study of the physiological mechanisms and computational significance of chaotic states in neuronal networks.

Suggested Citation

  • Omri Harish & David Hansel, 2015. "Asynchronous Rate Chaos in Spiking Neuronal Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-38, July.
  • Handle: RePEc:plo:pcbi00:1004266
    DOI: 10.1371/journal.pcbi.1004266
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004266
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004266&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael London & Arnd Roth & Lisa Beeren & Michael Häusser & Peter E. Latham, 2010. "Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex," Nature, Nature, vol. 466(7302), pages 123-127, July.
    2. Srdjan Ostojic & Nicolas Brunel, 2011. "From Spiking Neuron Models to Linear-Nonlinear Models," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-16, January.
    3. Michael Brecht & Miriam Schneider & Bert Sakmann & Troy W. Margrie, 2004. "Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex," Nature, Nature, vol. 427(6976), pages 704-710, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Koch Ocker & Krešimir Josić & Eric Shea-Brown & Michael A Buice, 2017. "Linking structure and activity in nonlinear spiking networks," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-47, June.
    2. Klinshov, Vladimir V. & Kovalchuk, Andrey V. & Franović, Igor & Perc, Matjaž & Svetec, Milan, 2022. "Rate chaos and memory lifetime in spiking neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evan S Schaffer & Srdjan Ostojic & L F Abbott, 2013. "A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-11, October.
    2. Yuxin Zhang & Yifei Yang & Xiaosi Li & Zijing Yuan & Yuki Todo & Haichuan Yang, 2023. "A Dendritic Neuron Model Optimized by Meta-Heuristics with a Power-Law-Distributed Population Interaction Network for Financial Time-Series Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-20, March.
    3. Christian Meisel & Andreas Klaus & Christian Kuehn & Dietmar Plenz, 2015. "Critical Slowing Down Governs the Transition to Neuron Spiking," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-20, February.
    4. Pengcheng Zhou & Shawn D Burton & Adam C Snyder & Matthew A Smith & Nathaniel N Urban & Robert E Kass, 2015. "Establishing a Statistical Link between Network Oscillations and Neural Synchrony," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-25, October.
    5. Richard Naud & Wulfram Gerstner, 2012. "Coding and Decoding with Adapting Neurons: A Population Approach to the Peri-Stimulus Time Histogram," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-14, October.
    6. Ravi Pancholi & Lauren Ryan & Simon Peron, 2023. "Learning in a sensory cortical microstimulation task is associated with elevated representational stability," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Emiliano Torre & Carlos Canova & Michael Denker & George Gerstein & Moritz Helias & Sonja Grün, 2016. "ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-34, July.
    8. Volker Pernice & Benjamin Staude & Stefano Cardanobile & Stefan Rotter, 2011. "How Structure Determines Correlations in Neuronal Networks," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-14, May.
    9. Tomáš Hromádka & Michael R DeWeese & Anthony M Zador, 2008. "Sparse Representation of Sounds in the Unanesthetized Auditory Cortex," PLOS Biology, Public Library of Science, vol. 6(1), pages 1-14, January.
    10. Mizusaki, Beatriz E.P. & Agnes, Everton J. & Erichsen, Rubem & Brunnet, Leonardo G., 2017. "Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 279-286.
    11. Vladimir Ilin & Ian H Stevenson & Maxim Volgushev, 2014. "Injection of Fully-Defined Signal Mixtures: A Novel High-Throughput Tool to Study Neuronal Encoding and Computations," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-10, October.
    12. Matthias Schultze-Kraft & Markus Diesmann & Sonja Grün & Moritz Helias, 2013. "Noise Suppression and Surplus Synchrony by Coincidence Detection," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-15, April.
    13. Skander Mensi & Olivier Hagens & Wulfram Gerstner & Christian Pozzorini, 2016. "Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-38, February.
    14. Angulo-Garcia, David & Torcini, Alessandro, 2014. "Stable chaos in fluctuation driven neural circuits," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 233-245.
    15. Michelle F Craft & Andrea K Barreiro & Shree Hari Gautam & Woodrow L Shew & Cheng Ly, 2021. "Differences in olfactory bulb mitral cell spiking with ortho- and retronasal stimulation revealed by data-driven models," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-28, September.
    16. James Trousdale & Yu Hu & Eric Shea-Brown & Krešimir Josić, 2012. "Impact of Network Structure and Cellular Response on Spike Time Correlations," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-15, March.
    17. Julian Rossbroich & Daniel Trotter & John Beninger & Katalin Tóth & Richard Naud, 2021. "Linear-nonlinear cascades capture synaptic dynamics," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-27, March.
    18. Etay Hay & Sean Hill & Felix Schürmann & Henry Markram & Idan Segev, 2011. "Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties," PLOS Computational Biology, Public Library of Science, vol. 7(7), pages 1-18, July.
    19. Yasuhiro Tsubo & Yoshikazu Isomura & Tomoki Fukai, 2012. "Power-Law Inter-Spike Interval Distributions Infer a Conditional Maximization of Entropy in Cortical Neurons," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-11, April.
    20. Victor J Barranca & Gregor Kovačič & Douglas Zhou & David Cai, 2014. "Sparsity and Compressed Coding in Sensory Systems," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-11, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.