IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48839-4.html
   My bibliography  Save this article

Evolution of connectivity architecture in the Drosophila mushroom body

Author

Listed:
  • Kaitlyn Elizabeth Ellis

    (University of Utah)

  • Sven Bervoets

    (University of Utah)

  • Hayley Smihula

    (University of Utah)

  • Ishani Ganguly

    (Center for Theoretical Neuroscience)

  • Eva Vigato

    (University of Utah)

  • Thomas O. Auer

    (University of Lausanne
    University of Fribourg)

  • Richard Benton

    (University of Lausanne)

  • Ashok Litwin-Kumar

    (Center for Theoretical Neuroscience)

  • Sophie Jeanne Cécile Caron

    (University of Utah)

Abstract

Brain evolution has primarily been studied at the macroscopic level by comparing the relative size of homologous brain centers between species. How neuronal circuits change at the cellular level over evolutionary time remains largely unanswered. Here, using a phylogenetically informed framework, we compare the olfactory circuits of three closely related Drosophila species that differ in their chemical ecology: the generalists Drosophila melanogaster and Drosophila simulans and Drosophila sechellia that specializes on ripe noni fruit. We examine a central part of the olfactory circuit that, to our knowledge, has not been investigated in these species—the connections between projection neurons and the Kenyon cells of the mushroom body—and identify species-specific connectivity patterns. We found that neurons encoding food odors connect more frequently with Kenyon cells, giving rise to species-specific biases in connectivity. These species-specific connectivity differences reflect two distinct neuronal phenotypes: in the number of projection neurons or in the number of presynaptic boutons formed by individual projection neurons. Finally, behavioral analyses suggest that such increased connectivity enhances learning performance in an associative task. Our study shows how fine-grained aspects of connectivity architecture in an associative brain center can change during evolution to reflect the chemical ecology of a species.

Suggested Citation

  • Kaitlyn Elizabeth Ellis & Sven Bervoets & Hayley Smihula & Ishani Ganguly & Eva Vigato & Thomas O. Auer & Richard Benton & Ashok Litwin-Kumar & Sophie Jeanne Cécile Caron, 2024. "Evolution of connectivity architecture in the Drosophila mushroom body," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48839-4
    DOI: 10.1038/s41467-024-48839-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48839-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48839-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sophie J. C. Caron & Vanessa Ruta & L. F. Abbott & Richard Axel, 2013. "Random convergence of olfactory inputs in the Drosophila mushroom body," Nature, Nature, vol. 497(7447), pages 113-117, May.
    2. Thomas O. Auer & Mohammed A. Khallaf & Ana F. Silbering & Giovanna Zappia & Kaitlyn Ellis & Raquel Álvarez-Ocaña & J. Roman Arguello & Bill S. Hansson & Gregory S. X. E. Jefferis & Sophie J. C. Caron , 2020. "Olfactory receptor and circuit evolution promote host specialization," Nature, Nature, vol. 579(7799), pages 402-408, March.
    3. Vanessa Ruta & Sandeep Robert Datta & Maria Luisa Vasconcelos & Jessica Freeland & Loren L. Looger & Richard Axel, 2010. "A dimorphic pheromone circuit in Drosophila from sensory input to descending output," Nature, Nature, vol. 468(7324), pages 686-690, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ishani Ganguly & Emily L. Heckman & Ashok Litwin-Kumar & E. Josephine Clowney & Rudy Behnia, 2024. "Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Genevieve C. Jouandet & Michael H. Alpert & José Miguel Simões & Richard Suhendra & Dominic D. Frank & Joshua I. Levy & Alessia Para & William L. Kath & Marco Gallio, 2023. "Rapid threat assessment in the Drosophila thermosensory system," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Ishani Ganguly & Emily L. Heckman & Ashok Litwin-Kumar & E. Josephine Clowney & Rudy Behnia, 2024. "Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Maria E Yurgel & Priyanka Kakad & Meet Zandawala & Dick R Nässel & Tanja A Godenschwege & Alex C Keene, 2019. "A single pair of leucokinin neurons are modulated by feeding state and regulate sleep–metabolism interactions," PLOS Biology, Public Library of Science, vol. 17(2), pages 1-26, February.
    4. Hagai Lalazar & L F Abbott & Eilon Vaadia, 2016. "Tuning Curves for Arm Posture Control in Motor Cortex Are Consistent with Random Connectivity," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-27, May.
    5. Shiu-Ling Chen & Bo-Ting Liu & Wang-Pao Lee & Sin-Bo Liao & Yao-Bang Deng & Chia-Lin Wu & Shuk-Man Ho & Bing-Xian Shen & Guan-Hock Khoo & Wei-Chiang Shiu & Chih-Hsuan Chang & Hui-Wen Shih & Jung-Kun W, 2022. "WAKE-mediated modulation of cVA perception via a hierarchical neuro-endocrine axis in Drosophila male-male courtship behaviour," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Raquel Álvarez-Ocaña & Michael P. Shahandeh & Vijayaditya Ray & Thomas O. Auer & Nicolas Gompel & Richard Benton, 2023. "Odor-regulated oviposition behavior in an ecological specialist," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Yilun Zhang & Tatyana O Sharpee, 2016. "A Robust Feedforward Model of the Olfactory System," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-15, April.
    8. Sanjoy Dasgupta & Daisuke Hattori & Saket Navlakha, 2022. "A neural theory for counting memories," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Tugce Yildizoglu & Jan-Marek Weislogel & Farhan Mohammad & Edwin S-Y Chan & Pryseley N Assam & Adam Claridge-Chang, 2015. "Estimating Information Processing in a Memory System: The Utility of Meta-analytic Methods for Genetics," PLOS Genetics, Public Library of Science, vol. 11(12), pages 1-27, December.
    10. Pranjul Singh & Shefali Goyal & Smith Gupta & Sanket Garg & Abhinav Tiwari & Varad Rajput & Alexander Shakeel Bates & Arjit Kant Gupta & Nitin Gupta, 2023. "Combinatorial encoding of odors in the mosquito antennal lobe," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    11. Nan-Ji Jiang & Xinqi Dong & Daniel Veit & Bill S. Hansson & Markus Knaden, 2024. "Elevated ozone disrupts mating boundaries in drosophilid flies," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Tyler R. Sizemore & Julius Jonaitis & Andrew M. Dacks, 2023. "Heterogeneous receptor expression underlies non-uniform peptidergic modulation of olfaction in Drosophila," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    13. Martin F Strube-Bloss & Austin Brown & Johannes Spaethe & Thomas Schmitt & Wolfgang Rössler, 2015. "Extracting the Behaviorally Relevant Stimulus: Unique Neural Representation of Farnesol, a Component of the Recruitment Pheromone of Bombus terrestris," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-16, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48839-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.