IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49616-z.html
   My bibliography  Save this article

Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body

Author

Listed:
  • Ishani Ganguly

    (Columbia University
    Columbia University
    Columbia University)

  • Emily L. Heckman

    (University of Michigan)

  • Ashok Litwin-Kumar

    (Columbia University
    Columbia University
    Columbia University)

  • E. Josephine Clowney

    (University of Michigan
    University of Michigan)

  • Rudy Behnia

    (Columbia University
    Columbia University
    Columbia University)

Abstract

The arthropod mushroom body is well-studied as an expansion layer representing olfactory stimuli and linking them to contingent events. However, 8% of mushroom body Kenyon cells in Drosophila melanogaster receive predominantly visual input, and their function remains unclear. Here, we identify inputs to visual Kenyon cells using the FlyWire adult whole-brain connectome. Input repertoires are similar across hemispheres and connectomes with certain inputs highly overrepresented. Many visual neurons presynaptic to Kenyon cells have large receptive fields, while interneuron inputs receive spatially restricted signals that may be tuned to specific visual features. Individual visual Kenyon cells randomly sample sparse inputs from combinations of visual channels, including multiple optic lobe neuropils. These connectivity patterns suggest that visual coding in the mushroom body, like olfactory coding, is sparse, distributed, and combinatorial. However, the specific input repertoire to the smaller population of visual Kenyon cells suggests a constrained encoding of visual stimuli.

Suggested Citation

  • Ishani Ganguly & Emily L. Heckman & Ashok Litwin-Kumar & E. Josephine Clowney & Rudy Behnia, 2024. "Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49616-z
    DOI: 10.1038/s41467-024-49616-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49616-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49616-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zeynep Okray & Pedro F. Jacob & Ciara Stern & Kieran Desmond & Nils Otto & Clifford B. Talbot & Paola Vargas-Gutierrez & Scott Waddell, 2023. "Multisensory learning binds neurons into a cross-modal memory engram," Nature, Nature, vol. 617(7962), pages 777-784, May.
    2. Gang Liu & Holger Seiler & Ai Wen & Troy Zars & Kei Ito & Reinhard Wolf & Martin Heisenberg & Li Liu, 2006. "Distinct memory traces for two visual features in the Drosophila brain," Nature, Nature, vol. 439(7076), pages 551-556, February.
    3. Sophie J. C. Caron & Vanessa Ruta & L. F. Abbott & Richard Axel, 2013. "Random convergence of olfactory inputs in the Drosophila mushroom body," Nature, Nature, vol. 497(7447), pages 113-117, May.
    4. Tyler A. Ofstad & Charles S. Zuker & Michael B. Reiser, 2011. "Visual place learning in Drosophila melanogaster," Nature, Nature, vol. 474(7350), pages 204-207, June.
    5. Kaitlyn Elizabeth Ellis & Sven Bervoets & Hayley Smihula & Ishani Ganguly & Eva Vigato & Thomas O. Auer & Richard Benton & Ashok Litwin-Kumar & Sophie Jeanne Cécile Caron, 2024. "Evolution of connectivity architecture in the Drosophila mushroom body," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Katharina Eichler & Feng Li & Ashok Litwin-Kumar & Youngser Park & Ingrid Andrade & Casey M. Schneider-Mizell & Timo Saumweber & Annina Huser & Claire Eschbach & Bertram Gerber & Richard D. Fetter & J, 2017. "The complete connectome of a learning and memory centre in an insect brain," Nature, Nature, vol. 548(7666), pages 175-182, August.
    7. Antoine Couto & Fletcher J. Young & Daniele Atzeni & Simon Marty & Lina Melo‐Flórez & Laura Hebberecht & Monica Monllor & Chris Neal & Francesco Cicconardi & W. Owen McMillan & Stephen H. Montgomery, 2023. "Rapid expansion and visual specialisation of learning and memory centres in the brains of Heliconiini butterflies," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Li Liu & Reinhard Wolf & Roman Ernst & Martin Heisenberg, 1999. "Context generalization in Drosophila visual learning requires the mushroom bodies," Nature, Nature, vol. 400(6746), pages 753-756, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Guo & Shasha Li & Y. Norman Zhou & Wei D. Lu & Yong Yan & Yimin A. Wu, 2024. "Interspecies-chimera machine vision with polarimetry for real-time navigation and anti-glare pattern recognition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Elizabeth B Brown & Kreesha D Shah & Richard Faville & Benjamin Kottler & Alex C Keene, 2020. "Drosophila insulin-like peptide 2 mediates dietary regulation of sleep intensity," PLOS Genetics, Public Library of Science, vol. 16(3), pages 1-26, March.
    3. Zhihao Zheng & Christopher S. Own & Adrian A. Wanner & Randal A. Koene & Eric W. Hammerschmith & William M. Silversmith & Nico Kemnitz & Ran Lu & David W. Tank & H. Sebastian Seung, 2024. "Fast imaging of millimeter-scale areas with beam deflection transmission electron microscopy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Chung, Jaewon & Bridgeford, Eric & Arroyo, Jesus & Pedigo, Benjamin D. & Saad-Eldin, Ali & Gopalakrishnan, Vivek & Xiang, Liang & Priebe, Carey E. & Vogelstein, Joshua T., 2020. "Statistical Connectomics," OSF Preprints ek4n3, Center for Open Science.
    5. Kaitlyn Elizabeth Ellis & Sven Bervoets & Hayley Smihula & Ishani Ganguly & Eva Vigato & Thomas O. Auer & Richard Benton & Ashok Litwin-Kumar & Sophie Jeanne Cécile Caron, 2024. "Evolution of connectivity architecture in the Drosophila mushroom body," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Hagai Lalazar & L F Abbott & Eilon Vaadia, 2016. "Tuning Curves for Arm Posture Control in Motor Cortex Are Consistent with Random Connectivity," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-27, May.
    7. Antoine Couto & Fletcher J. Young & Daniele Atzeni & Simon Marty & Lina Melo‐Flórez & Laura Hebberecht & Monica Monllor & Chris Neal & Francesco Cicconardi & W. Owen McMillan & Stephen H. Montgomery, 2023. "Rapid expansion and visual specialisation of learning and memory centres in the brains of Heliconiini butterflies," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Yilun Zhang & Tatyana O Sharpee, 2016. "A Robust Feedforward Model of the Olfactory System," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-15, April.
    9. Fangmin Zhou & Alexandra-Madelaine Tichy & Bibi Nusreen Imambocus & Shreyas Sakharwade & Francisco J. Rodriguez Jimenez & Marco González Martínez & Ishrat Jahan & Margarita Habib & Nina Wilhelmy & Van, 2023. "Optimized design and in vivo application of optogenetically functionalized Drosophila dopamine receptors," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Sanjoy Dasgupta & Daisuke Hattori & Saket Navlakha, 2022. "A neural theory for counting memories," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Tugce Yildizoglu & Jan-Marek Weislogel & Farhan Mohammad & Edwin S-Y Chan & Pryseley N Assam & Adam Claridge-Chang, 2015. "Estimating Information Processing in a Memory System: The Utility of Meta-analytic Methods for Genetics," PLOS Genetics, Public Library of Science, vol. 11(12), pages 1-27, December.
    12. Suguru Takagi & Gizem Sancer & Liliane Abuin & S. David Stupski & J. Roman Arguello & Lucia L. Prieto-Godino & David L. Stern & Steeve Cruchet & Raquel Álvarez-Ocaña & Carl F. R. Wienecke & Floris Bre, 2024. "Olfactory sensory neuron population expansions influence projection neuron adaptation and enhance odour tracking," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Francesco Cicconardi & Edoardo Milanetti & Erika C. Pinheiro de Castro & Anyi Mazo-Vargas & Steven M. Van Belleghem & Angelo Alberto Ruggieri & Pasi Rastas & Joseph Hanly & Elizabeth Evans & Chris D. , 2023. "Evolutionary dynamics of genome size and content during the adaptive radiation of Heliconiini butterflies," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    14. Tyler R. Sizemore & Julius Jonaitis & Andrew M. Dacks, 2023. "Heterogeneous receptor expression underlies non-uniform peptidergic modulation of olfaction in Drosophila," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    15. Xi En Cheng & Zhi-Ming Qian & Shuo Hong Wang & Nan Jiang & Aike Guo & Yan Qiu Chen, 2015. "A Novel Method for Tracking Individuals of Fruit Fly Swarms Flying in a Laboratory Flight Arena," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-18, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49616-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.