Author
Listed:
- Gustavo Deco
- Etienne Hugues
Abstract
It is well established that the variability of the neural activity across trials, as measured by the Fano factor, is elevated. This fact poses limits on information encoding by the neural activity. However, a series of recent neurophysiological experiments have changed this traditional view. Single cell recordings across a variety of species, brain areas, brain states and stimulus conditions demonstrate a remarkable reduction of the neural variability when an external stimulation is applied and when attention is allocated towards a stimulus within a neuron's receptive field, suggesting an enhancement of information encoding. Using an heterogeneously connected neural network model whose dynamics exhibits multiple attractors, we demonstrate here how this variability reduction can arise from a network effect. In the spontaneous state, we show that the high degree of neural variability is mainly due to fluctuation-driven excursions from attractor to attractor. This occurs when, in the parameter space, the network working point is around the bifurcation allowing multistable attractors. The application of an external excitatory drive by stimulation or attention stabilizes one specific attractor, eliminating in this way the transitions between the different attractors and resulting in a net decrease in neural variability over trials. Importantly, non-responsive neurons also exhibit a reduction of variability. Finally, this reduced variability is found to arise from an increased regularity of the neural spike trains. In conclusion, these results suggest that the variability reduction under stimulation and attention is a property of neural circuits. Author Summary: To understand how neurons encode information, neuroscientists record their firing activity while the animal executes a given task for many trials. Surprisingly, it has been found that the neural response is highly variable, which a priori limits the encoding of information by these neurons. However, recent experiments have shown that this variability is reduced when the animal receives a stimulus or attends to a particular one, suggesting an enhancement of information encoding. It is known that a cause of neural variability resides in the fact that individual neurons receive an input which fluctuates around their firing threshold. We demonstrate here that all the experimental results can naturally arise from the dynamics of a neural network. Using a realistic model, we show that the neural variability during spontaneous activity is particularly high because input noise induces large fluctuations between multiple –but unstable- network states. With stimulation or attention, one particular network state is stabilized and fluctuations decrease, leading to a neural variability reduction. In conclusion, our results suggest that the observed variability reduction is a property of the neural circuits of the brain.
Suggested Citation
Gustavo Deco & Etienne Hugues, 2012.
"Neural Network Mechanisms Underlying Stimulus Driven Variability Reduction,"
PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-10, March.
Handle:
RePEc:plo:pcbi00:1002395
DOI: 10.1371/journal.pcbi.1002395
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002395. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.