IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v163y2022ics0960077922007652.html
   My bibliography  Save this article

Discrete scaling and criticality in a chain of adaptive excitable integrators

Author

Listed:
  • Martinez-Saito, Mario

Abstract

We describe a chain of unidirectionally coupled adaptive excitable elements slowly driven by a stochastic process from one end and open at the other end, as a minimal toy model of unresolved irreducible uncertainty in a system performing inference through a hierarchical model. Threshold potentials adapt slowly to ensure sensitivity without being wasteful. Activity and energy are released as intermittent avalanches of pulses with a discrete scaling distribution largely independent of the exogenous input form. Subthreshold activities and threshold potentials exhibit Lorentzian temporal spectra, with a power-law range determined by position in the chain. Subthreshold bistability closely resembles empirical measurements of intracellular membrane potential. We suggest that critical cortical cascades emerge from a trade-off between metabolic power consumption and performance requirements in a critical world, and that the temporal scaling patterns of brain electrophysiological recordings ensue from weighted linear combinations of subthreshold activities and pulses from different hierarchy levels.

Suggested Citation

  • Martinez-Saito, Mario, 2022. "Discrete scaling and criticality in a chain of adaptive excitable integrators," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
  • Handle: RePEc:eee:chsofr:v:163:y:2022:i:c:s0960077922007652
    DOI: 10.1016/j.chaos.2022.112574
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922007652
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112574?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosa Cossart & Dmitriy Aronov & Rafael Yuste, 2003. "Attractor dynamics of network UP states in the neocortex," Nature, Nature, vol. 423(6937), pages 283-288, May.
    2. Manfred G Kitzbichler & Marie L Smith & Søren R Christensen & Ed Bullmore, 2009. "Broadband Criticality of Human Brain Network Synchronization," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-13, March.
    3. Duncan A J Blythe & Vadim V Nikulin, 2017. "Long-range temporal correlations in neural narrowband time-series arise due to critical dynamics," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-28, May.
    4. R. Quian Quiroga & L. Reddy & G. Kreiman & C. Koch & I. Fried, 2005. "Invariant visual representation by single neurons in the human brain," Nature, Nature, vol. 435(7045), pages 1102-1107, June.
    5. Pietronero, L. & Erzan, A. & Evertsz, C., 1988. "Theory of Laplacian fractals: Diffusion limited aggregation and dielectric breakdown model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 151(2), pages 207-245.
    6. Adrienne L. Fairhall & Geoffrey D. Lewen & William Bialek & Robert R. de Ruyter van Steveninck, 2001. "Efficiency and ambiguity in an adaptive neural code," Nature, Nature, vol. 412(6849), pages 787-792, August.
    7. Mark Newman, 2000. "The power of design," Nature, Nature, vol. 405(6785), pages 412-413, May.
    8. Bernhard Nessler & Michael Pfeiffer & Lars Buesing & Wolfgang Maass, 2013. "Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-30, April.
    9. Paolo Moretti & Miguel A. Muñoz, 2013. "Griffiths phases and the stretching of criticality in brain networks," Nature Communications, Nature, vol. 4(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert G. Sacco, 2019. "The Predictability of Synchronicity Experience: Results from a Survey of Jungian Analysts," International Journal of Psychological Studies, Canadian Center of Science and Education, vol. 11(3), pages 1-46, September.
    2. Jonathan Rubin & Nachum Ulanovsky & Israel Nelken & Naftali Tishby, 2016. "The Representation of Prediction Error in Auditory Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-28, August.
    3. Corentin Massot & Adam D Schneider & Maurice J Chacron & Kathleen E Cullen, 2012. "The Vestibular System Implements a Linear–Nonlinear Transformation In Order to Encode Self-Motion," PLOS Biology, Public Library of Science, vol. 10(7), pages 1-20, July.
    4. Todd Zorick & Mark A Mandelkern, 2013. "Multifractal Detrended Fluctuation Analysis of Human EEG: Preliminary Investigation and Comparison with the Wavelet Transform Modulus Maxima Technique," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-7, July.
    5. Rodrigo Quian Quiroga & Marta Boscaglia & Jacques Jonas & Hernan G. Rey & Xiaoqian Yan & Louis Maillard & Sophie Colnat-Coulbois & Laurent Koessler & Bruno Rossion, 2023. "Single neuron responses underlying face recognition in the human midfusiform face-selective cortex," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Vergassola, M. & Vespignani, A., 1991. "Non-conservative character of the intersection of self-similar cascades," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 174(2), pages 425-437.
    7. Luca D. Kolibius & Frederic Roux & George Parish & Marije Wal & Mircea Plas & Ramesh Chelvarajah & Vijay Sawlani & David T. Rollings & Johannes D. Lang & Stephanie Gollwitzer & Katrin Walther & Rüdige, 2023. "Hippocampal neurons code individual episodic memories in humans," Nature Human Behaviour, Nature, vol. 7(11), pages 1968-1979, November.
    8. Matthieu Gilson & David Dahmen & Rubén Moreno-Bote & Andrea Insabato & Moritz Helias, 2020. "The covariance perceptron: A new paradigm for classification and processing of time series in recurrent neuronal networks," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-38, October.
    9. Jakub Kopal & Kuldeep Kumar & Kimia Shafighi & Karin Saltoun & Claudia Modenato & Clara A. Moreau & Guillaume Huguet & Martineau Jean-Louis & Charles-Olivier Martin & Zohra Saci & Nadine Younis & Elis, 2024. "Using rare genetic mutations to revisit structural brain asymmetry," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Wei, Jinling & Zhou, Haiyan & Meng, Jun & Zhang, Fan & Chen, Yunmo & Zhou, Su, 2016. "The SOC in cells’ living expectations of Conway’s Game of Life and its extended version," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 348-352.
    11. Mikail Rubinov & Olaf Sporns & Jean-Philippe Thivierge & Michael Breakspear, 2011. "Neurobiologically Realistic Determinants of Self-Organized Criticality in Networks of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-14, June.
    12. Roberto F Galán, 2008. "On How Network Architecture Determines the Dominant Patterns of Spontaneous Neural Activity," PLOS ONE, Public Library of Science, vol. 3(5), pages 1-10, May.
    13. J. Gerard Wolff, 2019. "Information Compression as a Unifying Principle in Human Learning, Perception, and Cognition," Complexity, Hindawi, vol. 2019, pages 1-38, February.
    14. Meakin, Paul, 1992. "Simplified diffusion-limited aggregation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 187(1), pages 1-17.
    15. Louis Kang & Taro Toyoizumi, 2024. "Distinguishing examples while building concepts in hippocampal and artificial networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    16. Marcelo G Mattar & Michael W Cole & Sharon L Thompson-Schill & Danielle S Bassett, 2015. "A Functional Cartography of Cognitive Systems," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-26, December.
    17. Aguilar-Velázquez, D. & Guzmán-Vargas, L., 2017. "Synchronization and 1/f signals in interacting small-world networks," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 418-425.
    18. Espitia, Diego & Larralde, Hernán, 2020. "Universal and non-universal text statistics: Clustering coefficient for language identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    19. Marco Fuscà & Felix Siebenhühner & Sheng H. Wang & Vladislav Myrov & Gabriele Arnulfo & Lino Nobili & J. Matias Palva & Satu Palva, 2023. "Brain criticality predicts individual levels of inter-areal synchronization in human electrophysiological data," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Martorell, Carles & Calvo, Rubén & Annibale, Alessia & Muñoz, Miguel A., 2024. "Dynamically selected steady states and criticality in non-reciprocal networks," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:163:y:2022:i:c:s0960077922007652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.