IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v435y2005i7040d10.1038_nature03565.html
   My bibliography  Save this article

Sustained firing in auditory cortex evoked by preferred stimuli

Author

Listed:
  • Xiaoqin Wang

    (Johns Hopkins University School of Medicine)

  • Thomas Lu

    (Johns Hopkins University School of Medicine)

  • Ross K. Snider

    (Johns Hopkins University School of Medicine
    Montana State University)

  • Li Liang

    (Johns Hopkins University School of Medicine)

Abstract

Sound sense The auditory cortex is thought to exhibit only transient responses to sound stimulation, which sits oddly with its role in processing complex sounds such as human speech and music. This paradox may now have been resolved. The experiments that gave rise to current views of mammalian auditory cortex were based on studies in anaesthetized animals. New work on the auditory cortex of awake marmosets shows that the neurons can discharge in a sustained manner for a prolonged period. It is possible to imagine how a sound picture can be built up: select neurons fire throughout the duration of the sound when it is their preferred stimulus, while the responses of other neurons fade away after the onset of to what, for them, is a non-preferred stimulus.

Suggested Citation

  • Xiaoqin Wang & Thomas Lu & Ross K. Snider & Li Liang, 2005. "Sustained firing in auditory cortex evoked by preferred stimuli," Nature, Nature, vol. 435(7040), pages 341-346, May.
  • Handle: RePEc:nat:nature:v:435:y:2005:i:7040:d:10.1038_nature03565
    DOI: 10.1038/nature03565
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03565
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03565?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wensheng Sun & Dennis L Barbour, 2017. "Rate, not selectivity, determines neuronal population coding accuracy in auditory cortex," PLOS Biology, Public Library of Science, vol. 15(11), pages 1-22, November.
    2. Julie E Elie & Frédéric E Theunissen, 2019. "Invariant neural responses for sensory categories revealed by the time-varying information for communication calls," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-43, September.
    3. Michael A Carlin & Mounya Elhilali, 2013. "Sustained Firing of Model Central Auditory Neurons Yields a Discriminative Spectro-temporal Representation for Natural Sounds," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-18, March.
    4. Laurence Aitchison & Máté Lengyel, 2016. "The Hamiltonian Brain: Efficient Probabilistic Inference with Excitatory-Inhibitory Neural Circuit Dynamics," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-24, December.
    5. Daniel Bendor, 2015. "The Role of Inhibition in a Computational Model of an Auditory Cortical Neuron during the Encoding of Temporal Information," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-25, April.
    6. Lanlan Ma & Xuhui Tai & Liye Su & Lijuan Shi & Enhua Wang & Ling Qin, 2013. "The Neuronal Responses to Repetitive Acoustic Pulses in Different Fields of the Auditory Cortex of Awake Rats," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-10, May.
    7. Tomáš Hromádka & Michael R DeWeese & Anthony M Zador, 2008. "Sparse Representation of Sounds in the Unanesthetized Auditory Cortex," PLOS Biology, Public Library of Science, vol. 6(1), pages 1-14, January.
    8. Roohollah Massoudi & Marc M Van Wanrooij & Huib Versnel & A John Van Opstal, 2015. "Spectrotemporal Response Properties of Core Auditory Cortex Neurons in Awake Monkey," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-30, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:435:y:2005:i:7040:d:10.1038_nature03565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.