IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002756.html
   My bibliography  Save this article

Coordinated Optimization of Visual Cortical Maps (II) Numerical Studies

Author

Listed:
  • Lars Reichl
  • Dominik Heide
  • Siegrid Löwel
  • Justin C Crowley
  • Matthias Kaschube
  • Fred Wolf

Abstract

In the juvenile brain, the synaptic architecture of the visual cortex remains in a state of flux for months after the natural onset of vision and the initial emergence of feature selectivity in visual cortical neurons. It is an attractive hypothesis that visual cortical architecture is shaped during this extended period of juvenile plasticity by the coordinated optimization of multiple visual cortical maps such as orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we introduced a class of analytically tractable coordinated optimization models and solved representative examples, in which a spatially complex organization of the OP map is induced by interactions between the maps. We found that these solutions near symmetry breaking threshold predict a highly ordered map layout. Here we examine the time course of the convergence towards attractor states and optima of these models. In particular, we determine the timescales on which map optimization takes place and how these timescales can be compared to those of visual cortical development and plasticity. We also assess whether our models exhibit biologically more realistic, spatially irregular solutions at a finite distance from threshold, when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. We show that, although maps typically undergo substantial rearrangement, no other solutions than pinwheel crystals and stripes dominate in the emerging layouts. Pinwheel crystallization takes place on a rather short timescale and can also occur for detuned wavelengths of different maps. Our numerical results thus support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the architecture of the visual cortex. We discuss several alternative scenarios that may improve the agreement between model solutions and biological observations. Author Summary: Neurons in the visual cortex of carnivores, primates and their close relatives form spatial representations or maps of multiple stimulus features. In part (I) of this study we theoretically predicted maps that are optima of a variety of optimization principles. When analyzing the joint optimization of two interacting maps we showed that for different optimization principles the resulting optima show a stereotyped, spatially perfectly periodic layout. Experimental maps, however, are much more irregular. In particular, in case of orientation columns it was found that different species show apparently species invariant statistics of point defects, so-called pinwheels. In this paper, we numerically investigate whether the spatial features of the stereotyped optima described in part (I) are expressed on biologically relevant timescales and whether other, spatially irregular, long-living states emerge that better reproduce the experimentally observed statistical properties of orientation maps. Moreover, we explore whether the coordinated optimization of more than two maps can lead to spatially irregular optima.

Suggested Citation

  • Lars Reichl & Dominik Heide & Siegrid Löwel & Justin C Crowley & Matthias Kaschube & Fred Wolf, 2012. "Coordinated Optimization of Visual Cortical Maps (II) Numerical Studies," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-26, November.
  • Handle: RePEc:plo:pcbi00:1002756
    DOI: 10.1371/journal.pcbi.1002756
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002756
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002756&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002756?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Argentina, M. & Coullet, P., 1998. "A generic mechanism for spatiotemporal intermittency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 257(1), pages 45-60.
    2. F. Wolf & T. Geisel, 1998. "Spontaneous pinwheel annihilation during visual development," Nature, Nature, vol. 395(6697), pages 73-78, September.
    3. Lars Reichl & Dominik Heide & Siegrid Löwel & Justin C Crowley & Matthias Kaschube & Fred Wolf, 2012. "Coordinated Optimization of Visual Cortical Maps (I) Symmetry-based Analysis," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-24, November.
    4. Aniruddha Das & Charles D. Gilbert, 1997. "Distortions of visuotopic map match orientation singularities in primary visual cortex," Nature, Nature, vol. 387(6633), pages 594-598, June.
    5. Leonard E. White & David M. Coppola & David Fitzpatrick, 2001. "The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex," Nature, Nature, vol. 411(6841), pages 1049-1052, June.
    6. Ye Li & Stephen D. Van Hooser & Mark Mazurek & Leonard E. White & David Fitzpatrick, 2008. "Experience with moving visual stimuli drives the early development of cortical direction selectivity," Nature, Nature, vol. 456(7224), pages 952-956, December.
    7. Kenichi Ohki & Sooyoung Chung & Prakash Kara & Mark Hübener & Tobias Bonhoeffer & R. Clay Reid, 2006. "Highly ordered arrangement of single neurons in orientation pinwheels," Nature, Nature, vol. 442(7105), pages 925-928, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lars Reichl & Dominik Heide & Siegrid Löwel & Justin C Crowley & Matthias Kaschube & Fred Wolf, 2012. "Coordinated Optimization of Visual Cortical Maps (I) Symmetry-based Analysis," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lars Reichl & Dominik Heide & Siegrid Löwel & Justin C Crowley & Matthias Kaschube & Fred Wolf, 2012. "Coordinated Optimization of Visual Cortical Maps (I) Symmetry-based Analysis," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-24, November.
    2. Zvi N. Roth & Kendrick Kay & Elisha P. Merriam, 2022. "Natural scene sampling reveals reliable coarse-scale orientation tuning in human V1," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Manuel Schottdorf & Stephen J Eglen & Fred Wolf & Wolfgang Keil, 2014. "Can Retinal Ganglion Cell Dipoles Seed Iso-Orientation Domains in the Visual Cortex?," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-18, January.
    4. Javier G. Orlandi & Mohammad Abdolrahmani & Ryo Aoki & Dmitry R. Lyamzin & Andrea Benucci, 2023. "Distributed context-dependent choice information in mouse posterior cortex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Jeremy T. Chang & David Fitzpatrick, 2022. "Development of visual response selectivity in cortical GABAergic interneurons," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Elaine Tring & Konnie K. Duan & Dario L. Ringach, 2022. "ON/OFF domains shape receptive field structure in mouse visual cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Sohrab Najafian & Erin Koch & Kai Lun Teh & Jianzhong Jin & Hamed Rahimi-Nasrabadi & Qasim Zaidi & Jens Kremkow & Jose-Manuel Alonso, 2022. "A theory of cortical map formation in the visual brain," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    8. Jonathan J Hunt & Peter Dayan & Geoffrey J Goodhill, 2013. "Sparse Coding Can Predict Primary Visual Cortex Receptive Field Changes Induced by Abnormal Visual Input," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-17, May.
    9. Haleigh N. Mulholland & Matthias Kaschube & Gordon B. Smith, 2024. "Self-organization of modular activity in immature cortical networks," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Stuart Yarrow & Khaleel A Razak & Aaron R Seitz & Peggy Seriès, 2014. "Detecting and Quantifying Topography in Neural Maps," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-14, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.