IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v387y1997i6633d10.1038_42461.html
   My bibliography  Save this article

Distortions of visuotopic map match orientation singularities in primary visual cortex

Author

Listed:
  • Aniruddha Das

    (The Rockefeller University)

  • Charles D. Gilbert

    (The Rockefeller University)

Abstract

The map of orientation columns in primary visual cortex (V1) is known to show strong local distortions, with a generally smooth progression of orientation preference across extended regions of cortex, interrupted by sharp jumps (fractures) and point singularities1,2,3,4. The map of visual space on V1, in contrast, has been assumed to be locally smooth and isotropic. We find, on the contrary, that the map of visual space on cat V1 shows strong and systematic local distortions in register with inhomogeneities in the orientation map, with the rate of receptive field movement across cortex being largely proportional to the local rate of change of orientation. This suggests possible systematic local variations in the functional connectivity of short-range lateral connections that underlie local cortical processing.

Suggested Citation

  • Aniruddha Das & Charles D. Gilbert, 1997. "Distortions of visuotopic map match orientation singularities in primary visual cortex," Nature, Nature, vol. 387(6633), pages 594-598, June.
  • Handle: RePEc:nat:nature:v:387:y:1997:i:6633:d:10.1038_42461
    DOI: 10.1038/42461
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/42461
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/42461?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zvi N. Roth & Kendrick Kay & Elisha P. Merriam, 2022. "Natural scene sampling reveals reliable coarse-scale orientation tuning in human V1," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Lars Reichl & Dominik Heide & Siegrid Löwel & Justin C Crowley & Matthias Kaschube & Fred Wolf, 2012. "Coordinated Optimization of Visual Cortical Maps (I) Symmetry-based Analysis," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-24, November.
    3. Sohrab Najafian & Erin Koch & Kai Lun Teh & Jianzhong Jin & Hamed Rahimi-Nasrabadi & Qasim Zaidi & Jens Kremkow & Jose-Manuel Alonso, 2022. "A theory of cortical map formation in the visual brain," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    4. Lars Reichl & Dominik Heide & Siegrid Löwel & Justin C Crowley & Matthias Kaschube & Fred Wolf, 2012. "Coordinated Optimization of Visual Cortical Maps (II) Numerical Studies," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-26, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:387:y:1997:i:6633:d:10.1038_42461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.