IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002954.html
   My bibliography  Save this article

Optimal Balance of the Striatal Medium Spiny Neuron Network

Author

Listed:
  • Adam Ponzi
  • Jeffery R Wickens

Abstract

Slowly varying activity in the striatum, the main Basal Ganglia input structure, is important for the learning and execution of movement sequences. Striatal medium spiny neurons (MSNs) form cell assemblies whose population firing rates vary coherently on slow behaviourally relevant timescales. It has been shown that such activity emerges in a model of a local MSN network but only at realistic connectivities of and only when MSN generated inhibitory post-synaptic potentials (IPSPs) are realistically sized. Here we suggest a reason for this. We investigate how MSN network generated population activity interacts with temporally varying cortical driving activity, as would occur in a behavioural task. We find that at unrealistically high connectivity a stable winners-take-all type regime is found where network activity separates into fixed stimulus dependent regularly firing and quiescent components. In this regime only a small number of population firing rate components interact with cortical stimulus variations. Around connectivity a transition to a more dynamically active regime occurs where all cells constantly switch between activity and quiescence. In this low connectivity regime, MSN population components wander randomly and here too are independent of variations in cortical driving. Only in the transition regime do weak changes in cortical driving interact with many population components so that sequential cell assemblies are reproducibly activated for many hundreds of milliseconds after stimulus onset and peri-stimulus time histograms display strong stimulus and temporal specificity. We show that, remarkably, this activity is maximized at striatally realistic connectivities and IPSP sizes. Thus, we suggest the local MSN network has optimal characteristics – it is neither too stable to respond in a dynamically complex temporally extended way to cortical variations, nor is it too unstable to respond in a consistent repeatable way. Rather, it is optimized to generate stimulus dependent activity patterns for long periods after variations in cortical excitation. Author Summary: The striatum forms the main input to the Basal Ganglia (BG), a subcortical structure involved in reinforcement learning and action selection. It is composed of medium spiny neurons (MSNs) which inhibit each other through a network of collaterals, receive excitatory projections from the cerebral cortex, and are the only cells which project outside the striatum. Because of its inhibitory structure, the MSN network is often thought to act selectively, transmitting the most active cortical inputs downstream in the BG while suppressing others. However, studies show that local MSN network connections are too sparse and weak to perform global selection and their function remains puzzling. Here we investigate a different hypothesis. Rather than generating a static stimulus dependent activity pattern, we suggest the MSN network is optimized to generate stimulus dependent dynamical activity patterns for long time periods after variations in cortical excitation. We demonstrate, using simulations, that the MSN network has special characteristics. It is neither too stable to respond in a dynamically complex temporally extended way to cortical variations, nor is it too unstable to respond in a consistent repeatable way. We discuss how these properties may be utilized in temporally delayed reinforcement learning tasks strongly recruiting the striatum.

Suggested Citation

  • Adam Ponzi & Jeffery R Wickens, 2013. "Optimal Balance of the Striatal Medium Spiny Neuron Network," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-21, April.
  • Handle: RePEc:plo:pcbi00:1002954
    DOI: 10.1371/journal.pcbi.1002954
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002954
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002954&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002954?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rosa Cossart & Dmitriy Aronov & Rafael Yuste, 2003. "Attractor dynamics of network UP states in the neocortex," Nature, Nature, vol. 423(6937), pages 283-288, May.
    2. Mikhail I Rabinovich & Ramón Huerta & Pablo Varona & Valentin S Afraimovich, 2008. "Transient Cognitive Dynamics, Metastability, and Decision Making," PLOS Computational Biology, Public Library of Science, vol. 4(5), pages 1-9, May.
    3. Elad Schneidman & Michael J. Berry & Ronen Segev & William Bialek, 2006. "Weak pairwise correlations imply strongly correlated network states in a neural population," Nature, Nature, vol. 440(7087), pages 1007-1012, April.
    4. Mimi H. Kao & Allison J. Doupe & Michael S. Brainard, 2005. "Contributions of an avian basal ganglia–forebrain circuit to real-time modulation of song," Nature, Nature, vol. 433(7026), pages 638-643, February.
    5. Gustavo Deco & Etienne Hugues, 2012. "Neural Network Mechanisms Underlying Stimulus Driven Variability Reduction," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emili Balaguer-Ballester & Christopher C Lapish & Jeremy K Seamans & Daniel Durstewitz, 2011. "Attracting Dynamics of Frontal Cortex Ensembles during Memory-Guided Decision-Making," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-19, May.
    2. Fabiano Baroni & Joaquín J Torres & Pablo Varona, 2010. "History-Dependent Excitability as a Single-Cell Substrate of Transient Memory for Information Discrimination," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-19, December.
    3. Lipovetsky, Stan, 2018. "Quantum paradigm of probability amplitude and complex utility in entangled discrete choice modeling," Journal of choice modelling, Elsevier, vol. 27(C), pages 62-73.
    4. Mark L Ioffe & Michael J Berry II, 2017. "The structured ‘low temperature’ phase of the retinal population code," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    5. Katarína Bod’ová & Enikő Szép & Nicholas H Barton, 2021. "Dynamic maximum entropy provides accurate approximation of structured population dynamics," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-22, December.
    6. MohammadReza Zahedian & Mahsa Bagherikalhor & Andrey Trufanov & G. Reza Jafari, 2022. "Financial Crisis in the Framework of Non-zero Temperature Balance Theory," Papers 2202.03198, arXiv.org.
    7. Gaëlle Desbordes & Jianzhong Jin & Chong Weng & Nicholas A Lesica & Garrett B Stanley & Jose-Manuel Alonso, 2008. "Timing Precision in Population Coding of Natural Scenes in the Early Visual System," PLOS Biology, Public Library of Science, vol. 6(12), pages 1-11, December.
    8. Yasser Roudi & Sheila Nirenberg & Peter E Latham, 2009. "Pairwise Maximum Entropy Models for Studying Large Biological Systems: When They Can Work and When They Can't," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    9. Maulana, Ardian & Situngkir, Hokky, 2015. "Korelasi Bebas-skala dalam Studi Geo-politik Pemilihan [Scale-free correlation within Geopolitics of Election Studies]," MPRA Paper 66351, University Library of Munich, Germany.
    10. Milena Raffi & Ralph M Siegel, 2007. "A Functional Architecture of Optic Flow in the Inferior Parietal Lobule of the Behaving Monkey," PLOS ONE, Public Library of Science, vol. 2(2), pages 1-19, February.
    11. Zhang, Qi & Deng, Ronghao & Ding, Kaixing & Li, Meizhu, 2024. "Structural analysis and the sum of nodes’ betweenness centrality in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    12. Hideaki Shimazaki & Shun-ichi Amari & Emery N Brown & Sonja Grün, 2012. "State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-27, March.
    13. Timothy Verstynen & Jeff Phillips & Emily Braun & Brett Workman & Christian Schunn & Walter Schneider, 2012. "Dynamic Sensorimotor Planning during Long-Term Sequence Learning: The Role of Variability, Response Chunking and Planning Errors," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-15, October.
    14. Timothy R Lezon & Ivet Bahar, 2010. "Using Entropy Maximization to Understand the Determinants of Structural Dynamics beyond Native Contact Topology," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-12, June.
    15. Xiaoyuan Liu & Hayato Ushijima-Mwesigwa & Avradip Mandal & Sarvagya Upadhyay & Ilya Safro & Arnab Roy, 2022. "Leveraging special-purpose hardware for local search heuristics," Computational Optimization and Applications, Springer, vol. 82(1), pages 1-29, May.
    16. Sacha Jennifer van Albada & Moritz Helias & Markus Diesmann, 2015. "Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-37, September.
    17. Sahar Gelfman & Quanli Wang & Yi-Fan Lu & Diana Hall & Christopher D Bostick & Ryan Dhindsa & Matt Halvorsen & K Melodi McSweeney & Ellese Cotterill & Tom Edinburgh & Michael A Beaumont & Wayne N Fran, 2018. "meaRtools: An R package for the analysis of neuronal networks recorded on microelectrode arrays," PLOS Computational Biology, Public Library of Science, vol. 14(10), pages 1-20, October.
    18. Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
    19. Martinez-Saito, Mario, 2022. "Discrete scaling and criticality in a chain of adaptive excitable integrators," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    20. Simona Cocco & Remi Monasson & Martin Weigt, 2013. "From Principal Component to Direct Coupling Analysis of Coevolution in Proteins: Low-Eigenvalue Modes are Needed for Structure Prediction," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-17, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.