Author
Listed:
- M T Wilson
- P A Robinson
- B O'Neill
- D A Steyn-Ross
Abstract
Relationships between spiking-neuron and rate-based approaches to the dynamics of neural assemblies are explored by analyzing a model system that can be treated by both methods, with the rate-based method further averaged over multiple neurons to give a neural-field approach. The system consists of a chain of neurons, each with simple spiking dynamics that has a known rate-based equivalent. The neurons are linked by propagating activity that is described in terms of a spatial interaction strength with temporal delays that reflect distances between neurons; feedback via a separate delay loop is also included because such loops also exist in real brains. These interactions are described using a spatiotemporal coupling function that can carry either spikes or rates to provide coupling between neurons. Numerical simulation of corresponding spike- and rate-based methods with these compatible couplings then allows direct comparison between the dynamics arising from these approaches. The rate-based dynamics can reproduce two different forms of oscillation that are present in the spike-based model: spiking rates of individual neurons and network-induced modulations of spiking rate that occur if network interactions are sufficiently strong. Depending on conditions either mode of oscillation can dominate the spike-based dynamics and in some situations, particularly when the ratio of the frequencies of these two modes is integer or half-integer, the two can both be present and interact with each other. Author Summary: We develop and demonstrate a model that allows us to examine how the predictions of spiking and rate-based models of neurons and their interactions are related. First, the behavior of a chain of neurons is explored by simulating each spiking neuron and spike-mediated interactions between neurons individually. Second, the same chain is studied using approximations based on the firing rate of the neurons. The predictions for these two approaches are closely compared and it is found that the simpler, rate-based approach captures the major system behaviors of the spike-based approach, namely spiking rates and modulations in those rates. Strong interactions between these modes take place when the frequency of one mode is an integer or half-integer multiple of the frequency of the other mode.
Suggested Citation
M T Wilson & P A Robinson & B O'Neill & D A Steyn-Ross, 2012.
"Complementarity of Spike- and Rate-Based Dynamics of Neural Systems,"
PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-1, June.
Handle:
RePEc:plo:pcbi00:1002560
DOI: 10.1371/journal.pcbi.1002560
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002560. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.