IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000106.html
   My bibliography  Save this article

Increased Brain Signal Variability Accompanies Lower Behavioral Variability in Development

Author

Listed:
  • Anthony Randal McIntosh
  • Natasa Kovacevic
  • Roxane J Itier

Abstract

As the brain matures, its responses become optimized. Behavioral measures show this through improved accuracy and decreased trial-to-trial variability. The question remains whether the supporting brain dynamics show a similar decrease in variability. We examined the relation between variability in single trial evoked electrical activity of the brain (measured with EEG) and performance of a face memory task in children (8–15 y) and young adults (20–33 y). Behaviorally, children showed slower, more variable response times (RT), and less accurate recognition than adults. However, brain signal variability increased with age, and showed strong negative correlations with intrasubject RT variability and positive correlations with accuracy. Thus, maturation appears to lead to a brain with greater functional variability, which is indicative of enhanced neural complexity. This variability may reflect a broader repertoire of metastable brain states and more fluid transitions among them that enable optimum responses. Our results suggest that the moment-to-moment variability in brain activity may be a critical index of the cognitive capacity of the brain.Author Summary: Intuitive notions of brain–behavior relationships would suggest that because children show more variability in behavior, their brains should also be more variable. We demonstrate that this is not the case. In measuring brain signal variability with EEG and behavior in a simple face recognition task, we found that brain signal variability increases in children from 8–15 y and is even higher in young adults. Importantly, we show that this increased brain variability correlates with reduced behavioral variability and more accurate performance. A brain that has more variability also has greater complexity and a greater capacity for information processing. The implication of our findings is that variability in brain signals, or what some would call noise, is actually a critical feature of brain function. For the brain to operate at an optimal level, a certain amount of internal noise is necessary. In a certain way it could be stated that a noisy brain is a healthy brain.

Suggested Citation

  • Anthony Randal McIntosh & Natasa Kovacevic & Roxane J Itier, 2008. "Increased Brain Signal Variability Accompanies Lower Behavioral Variability in Development," PLOS Computational Biology, Public Library of Science, vol. 4(7), pages 1-9, July.
  • Handle: RePEc:plo:pcbi00:1000106
    DOI: 10.1371/journal.pcbi.1000106
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000106
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000106&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. József Fiser & Chiayu Chiu & Michael Weliky, 2004. "Small modulation of ongoing cortical dynamics by sensory input during natural vision," Nature, Nature, vol. 431(7008), pages 573-578, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martínez, J.H. & Ariza, P. & Zanin, M. & Papo, D. & Maestú, F. & Pastor, J.M. & Bajo, R. & Boccaletti, S. & Buldú, J.M., 2015. "Anomalous consistency in Mild Cognitive Impairment: A complex networks approach," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 144-155.
    2. Mazen El-Baba & Daniel J Lewis & Zhuo Fang & Adrian M Owen & Stuart M Fogel & J Bruce Morton, 2019. "Functional connectivity dynamics slow with descent from wakefulness to sleep," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-13, December.
    3. Yoshiki Kaneoke & Tomohiro Donishi & Jun Iwatani & Satoshi Ukai & Kazuhiro Shinosaki & Masaki Terada, 2012. "Variance and Autocorrelation of the Spontaneous Slow Brain Activity," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-10, May.
    4. Macauley Smith Breault & Pierre Sacré & Zachary B. Fitzgerald & John T. Gale & Kathleen E. Cullen & Jorge A. González-Martínez & Sridevi V. Sarma, 2023. "Internal states as a source of subject-dependent movement variability are represented by large-scale brain networks," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Jessie M H Szostakiwskyj & Stephanie E Willatt & Filomeno Cortese & Andrea B Protzner, 2017. "The modulation of EEG variability between internally- and externally-driven cognitive states varies with maturation and task performance," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-27, July.
    6. David Florentino Montez & Finnegan J Calabro & Beatriz Luna, 2019. "Working memory improves developmentally as neural processes stabilize," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-15, March.
    7. Biyu J He & John M Zempel, 2013. "Average Is Optimal: An Inverted-U Relationship between Trial-to-Trial Brain Activity and Behavioral Performance," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel D Puccini & Albert Compte & Miguel Maravall, 2006. "Stimulus Dependence of Barrel Cortex Directional Selectivity," PLOS ONE, Public Library of Science, vol. 1(1), pages 1-6, December.
    2. Benjamin R Cowley & Matthew A Smith & Adam Kohn & Byron M Yu, 2016. "Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-31, December.
    3. Yang Yiling & Katharine Shapcott & Alina Peter & Johanna Klon-Lipok & Huang Xuhui & Andreea Lazar & Wolf Singer, 2023. "Robust encoding of natural stimuli by neuronal response sequences in monkey visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Márton Albert Hajnal & Duy Tran & Michael Einstein & Mauricio Vallejo Martelo & Karen Safaryan & Pierre-Olivier Polack & Peyman Golshani & Gergő Orbán, 2023. "Continuous multiplexed population representations of task context in the mouse primary visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Lars Buesing & Johannes Bill & Bernhard Nessler & Wolfgang Maass, 2011. "Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-22, November.
    6. Miguel Maravall & Rasmus S Petersen & Adrienne L Fairhall & Ehsan Arabzadeh & Mathew E Diamond, 2007. "Shifts in Coding Properties and Maintenance of Information Transmission during Adaptation in Barrel Cortex," PLOS Biology, Public Library of Science, vol. 5(2), pages 1-12, January.
    7. Rong J. B. Zhu & Xue-Xin Wei, 2023. "Unsupervised approach to decomposing neural tuning variability," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Rava Azeredo da Silveira & Michael J Berry II, 2014. "High-Fidelity Coding with Correlated Neurons," PLOS Computational Biology, Public Library of Science, vol. 10(11), pages 1-25, November.
    9. Disheng Tang & Joel Zylberberg & Xiaoxuan Jia & Hannah Choi, 2024. "Stimulus type shapes the topology of cellular functional networks in mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.