IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1001046.html
   My bibliography  Save this article

Decrypting the Sequence of Structural Events during the Gating Transition of Pentameric Ligand-Gated Ion Channels Based on an Interpolated Elastic Network Model

Author

Listed:
  • Wenjun Zheng
  • Anthony Auerbach

Abstract

Despite many experimental and computational studies of the gating transition of pentameric ligand-gated ion channels (pLGICs), the structural basis of how ligand binding couples to channel gating remains unknown. By using a newly developed interpolated elastic network model (iENM), we have attempted to compute a likely transition pathway from the closed- to the open-channel conformation of pLGICs as captured by the crystal structures of two prokaryotic pLGICs. The iENM pathway predicts a sequence of structural events that begins at the ligand-binding loops and is followed by the displacements of two key loops (loop 2 and loop 7) at the interface between the extracellular and transmembrane domain, the tilting/bending of the pore-lining M2 helix, and subsequent movements of M4, M3 and M1 helices in the transmembrane domain. The predicted order of structural events is in broad agreement with the Φ-value analysis of α subunit of nicotinic acetylcholine receptor mutants, which supports a conserved core mechanism for ligand-gated channel opening in pLGICs. Further perturbation analysis has supported the critical role of certain intra-subunit and inter-subunit interactions in dictating the above sequence of events.Author Summary: Pentameric ligand-gated ion channels are a family of membrane proteins that open/close an ion-conducting channel in response to the binding of specific ligands. Some members of the family, including nicotinic acetylcholine receptors, play key physiological roles in signal transduction at synapses. Despite many experimental and computational studies of the gating transition of these pentameric ion channels, the structural basis of how ligand binding couples to channel opening remains uncertain. In particular, the all-atom computer simulation of the gating transition is limited to nanosecond ∼ microsecond time scales while the entire transition takes tens of microseconds. In this study, we have employed a highly efficient coarse-grained modeling method to dissect the sequence of structural events underlying the gating transition. The model predictions are in broad agreement with the kinetic analysis of mutants of nicotinic acetylcholine receptors. This study has established a useful computational framework to simulate the functional dynamics of pentameric ligand-gated ion channels.

Suggested Citation

  • Wenjun Zheng & Anthony Auerbach, 2011. "Decrypting the Sequence of Structural Events during the Gating Transition of Pentameric Ligand-Gated Ion Channels Based on an Interpolated Elastic Network Model," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-10, January.
  • Handle: RePEc:plo:pcbi00:1001046
    DOI: 10.1371/journal.pcbi.1001046
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001046
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001046&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1001046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1001046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.