IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0064326.html
   My bibliography  Save this article

Signal Transduction Pathways in the Pentameric Ligand-Gated Ion Channels

Author

Listed:
  • David Mowrey
  • Qiang Chen
  • Yuhe Liang
  • Jie Liang
  • Yan Xu
  • Pei Tang

Abstract

The mechanisms of allosteric action within pentameric ligand-gated ion channels (pLGICs) remain to be determined. Using crystallography, site-directed mutagenesis, and two-electrode voltage clamp measurements, we identified two functionally relevant sites in the extracellular (EC) domain of the bacterial pLGIC from Gloeobacter violaceus (GLIC). One site is at the C-loop region, where the NQN mutation (D91N, E177Q, and D178N) eliminated inter-subunit salt bridges in the open-channel GLIC structure and thereby shifted the channel activation to a higher agonist concentration. The other site is below the C-loop, where binding of the anesthetic ketamine inhibited GLIC currents in a concentration dependent manner. To understand how a perturbation signal in the EC domain, either resulting from the NQN mutation or ketamine binding, is transduced to the channel gate, we have used the Perturbation-based Markovian Transmission (PMT) model to determine dynamic responses of the GLIC channel and signaling pathways upon initial perturbations in the EC domain of GLIC. Despite the existence of many possible routes for the initial perturbation signal to reach the channel gate, the PMT model in combination with Yen's algorithm revealed that perturbation signals with the highest probability flow travel either via the β1–β2 loop or through pre-TM1. The β1–β2 loop occurs in either intra- or inter-subunit pathways, while pre-TM1 occurs exclusively in inter-subunit pathways. Residues involved in both types of pathways are well supported by previous experimental data on nAChR. The direct coupling between pre-TM1 and TM2 of the adjacent subunit adds new insight into the allosteric signaling mechanism in pLGICs.

Suggested Citation

  • David Mowrey & Qiang Chen & Yuhe Liang & Jie Liang & Yan Xu & Pei Tang, 2013. "Signal Transduction Pathways in the Pentameric Ligand-Gated Ion Channels," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-8, May.
  • Handle: RePEc:plo:pone00:0064326
    DOI: 10.1371/journal.pone.0064326
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064326
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0064326&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0064326?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Claudio Grosman & Ming Zhou & Anthony Auerbach, 2000. "Mapping the conformational wave of acetylcholine receptor channel gating," Nature, Nature, vol. 403(6771), pages 773-776, February.
    2. Won Yong Lee & Steven M. Sine, 2005. "Principal pathway coupling agonist binding to channel gating in nicotinic receptors," Nature, Nature, vol. 438(7065), pages 243-247, November.
    3. Nicolas Bocquet & Hugues Nury & Marc Baaden & Chantal Le Poupon & Jean-Pierre Changeux & Marc Delarue & Pierre-Jean Corringer, 2009. "X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation," Nature, Nature, vol. 457(7225), pages 111-114, January.
    4. Cecilia Bouzat & Fernanda Gumilar & Guillermo Spitzmaul & Hai-Long Wang & Diego Rayes & Scott B. Hansen & Palmer Taylor & Steven M. Sine, 2004. "Coupling of agonist binding to channel gating in an ACh-binding protein linked to an ion channel," Nature, Nature, vol. 430(7002), pages 896-900, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mackenzie J. Thompson & Farid Mansoub Bekarkhanechi & Anna Ananchenko & Hugues Nury & John E. Baenziger, 2024. "A release of local subunit conformational heterogeneity underlies gating in a muscle nicotinic acetylcholine receptor," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Nikhil Bharambe & Zhuowen Li & David Seiferth & Asha Manikkoth Balakrishna & Philip C. Biggin & Sandip Basak, 2024. "Cryo-EM structures of prokaryotic ligand-gated ion channel GLIC provide insights into gating in a lipid environment," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Mohammed Atif & Argel Estrada-Mondragon & Bindi Nguyen & Joseph W Lynch & Angelo Keramidas, 2017. "Effects of glutamate and ivermectin on single glutamate-gated chloride channels of the parasitic nematode H. contortus," PLOS Pathogens, Public Library of Science, vol. 13(10), pages 1-30, October.
    4. John T. Petroff & Noah M. Dietzen & Ezry Santiago-McRae & Brett Deng & Maya S. Washington & Lawrence J. Chen & K. Trent Moreland & Zengqin Deng & Michael Rau & James A. J. Fitzpatrick & Peng Yuan & Th, 2022. "Open-channel structure of a pentameric ligand-gated ion channel reveals a mechanism of leaflet-specific phospholipid modulation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Do Hoon Kwon & Feng Zhang & Justin G. Fedor & Yang Suo & Seok-Yong Lee, 2022. "Vanilloid-dependent TRPV1 opening trajectory from cryoEM ensemble analysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Kurt T Laha & Borna Ghosh & Cynthia Czajkowski, 2013. "Macroscopic Kinetics of Pentameric Ligand Gated Ion Channels: Comparisons between Two Prokaryotic Channels and One Eukaryotic Channel," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-9, November.
    7. Dinesh C Indurthi & Trevor M Lewis & Philip K Ahring & Thomas Balle & Mary Chebib & Nathan L Absalom, 2016. "Ligand Binding at the α4-α4 Agonist-Binding Site of the α4β2 nAChR Triggers Receptor Activation through a Pre-Activated Conformational State," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-20, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0064326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.