IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v423y2003i6943d10.1038_nature01748.html
   My bibliography  Save this article

Structure and gating mechanism of the acetylcholine receptor pore

Author

Listed:
  • Atsuo Miyazawa

    (RIKEN Harima Institute)

  • Yoshinori Fujiyoshi

    (Kyoto University)

  • Nigel Unwin

    (MRC Laboratory of Molecular Biology)

Abstract

The nicotinic acetylcholine receptor controls electrical signalling between nerve and muscle cells by opening and closing a gated, membrane-spanning pore. Here we present an atomic model of the closed pore, obtained by electron microscopy of crystalline postsynaptic membranes. The pore is shaped by an inner ring of 5 α-helices, which curve radially to create a tapering path for the ions, and an outer ring of 15 α-helices, which coil around each other and shield the inner ring from the lipids. The gate is a constricting hydrophobic girdle at the middle of the lipid bilayer, formed by weak interactions between neighbouring inner helices. When acetylcholine enters the ligand-binding domain, it triggers rotations of the protein chains on opposite sides of the entrance to the pore. These rotations are communicated through the inner helices, and open the pore by breaking the girdle apart.

Suggested Citation

  • Atsuo Miyazawa & Yoshinori Fujiyoshi & Nigel Unwin, 2003. "Structure and gating mechanism of the acetylcholine receptor pore," Nature, Nature, vol. 423(6943), pages 949-955, June.
  • Handle: RePEc:nat:nature:v:423:y:2003:i:6943:d:10.1038_nature01748
    DOI: 10.1038/nature01748
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01748
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eva Chovancova & Antonin Pavelka & Petr Benes & Ondrej Strnad & Jan Brezovsky & Barbora Kozlikova & Artur Gora & Vilem Sustr & Martin Klvana & Petr Medek & Lada Biedermannova & Jiri Sochor & Jiri Damb, 2012. "CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
    2. Arthur A. Melo & Thiemo Sprink & Jeffrey K. Noel & Elena Vázquez-Sarandeses & Chris Hoorn & Saif Mohd & Justus Loerke & Christian M. T. Spahn & Oliver Daumke, 2022. "Cryo-electron tomography reveals structural insights into the membrane remodeling mode of dynamin-like EHD filaments," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Eric Gibbs & Emily Klemm & David Seiferth & Arvind Kumar & Serban L. Ilca & Philip C. Biggin & Sudha Chakrapani, 2023. "Conformational transitions and allosteric modulation in a heteromeric glycine receptor," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:423:y:2003:i:6943:d:10.1038_nature01748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.