IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0021960.html
   My bibliography  Save this article

Spatial Organization of Mesenchymal Stem Cells In Vitro—Results from a New Individual Cell-Based Model with Podia

Author

Listed:
  • Martin Hoffmann
  • Jens-Peer Kuska
  • Matthias Zscharnack
  • Markus Loeffler
  • Joerg Galle

Abstract

Therapeutic application of mesenchymal stem cells (MSC) requires their extensive in vitro expansion. MSC in culture typically grow to confluence within a few weeks. They show spindle-shaped fibroblastoid morphology and align to each other in characteristic spatial patterns at high cell density. We present an individual cell-based model (IBM) that is able to quantitatively describe the spatio-temporal organization of MSC in culture. Our model substantially improves on previous models by explicitly representing cell podia and their dynamics. It employs podia-generated forces for cell movement and adjusts cell behavior in response to cell density. At the same time, it is simple enough to simulate thousands of cells with reasonable computational effort. Experimental sheep MSC cultures were monitored under standard conditions. Automated image analysis was used to determine the location and orientation of individual cells. Our simulations quantitatively reproduced the observed growth dynamics and cell-cell alignment assuming cell density-dependent proliferation, migration, and morphology. In addition to cell growth on plain substrates our model captured cell alignment on micro-structured surfaces. We propose a specific surface micro-structure that according to our simulations can substantially enlarge cell culture harvest. The ‘tool box’ of cell migratory behavior newly introduced in this study significantly enhances the bandwidth of IBM. Our approach is capable of accommodating individual cell behavior and collective cell dynamics of a variety of cell types and tissues in computational systems biology.

Suggested Citation

  • Martin Hoffmann & Jens-Peer Kuska & Matthias Zscharnack & Markus Loeffler & Joerg Galle, 2011. "Spatial Organization of Mesenchymal Stem Cells In Vitro—Results from a New Individual Cell-Based Model with Podia," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-16, July.
  • Handle: RePEc:plo:pone00:0021960
    DOI: 10.1371/journal.pone.0021960
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0021960
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0021960&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0021960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yilin Wu & Yi Jiang & Dale Kaiser & Mark Alber, 2007. "Social Interactions in Myxobacterial Swarming," PLOS Computational Biology, Public Library of Science, vol. 3(12), pages 1-13, December.
    2. HoJung Cho & Henrik Jönsson & Kyle Campbell & Pontus Melke & Joshua W Williams & Bruno Jedynak & Ann M Stevens & Alex Groisman & Andre Levchenko, 2007. "Self-Organization in High-Density Bacterial Colonies: Efficient Crowd Control," PLOS Biology, Public Library of Science, vol. 5(11), pages 1-10, October.
    3. Roeland M H Merks & Erica D Perryn & Abbas Shirinifard & James A Glazier, 2008. "Contact-Inhibited Chemotaxis in De Novo and Sprouting Blood-Vessel Growth," PLOS Computational Biology, Public Library of Science, vol. 4(9), pages 1-16, September.
    4. Liang Li & Simon F Nørrelykke & Edward C Cox, 2008. "Persistent Cell Motion in the Absence of External Signals: A Search Strategy for Eukaryotic Cells," PLOS ONE, Public Library of Science, vol. 3(5), pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Priscila C A da Silva & Tiago V Rosembach & Anésia A Santos & Márcio S Rocha & Marcelo L Martins, 2014. "Normal and Tumoral Melanocytes Exhibit q-Gaussian Random Search Patterns," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.
    2. Murguía, J.S. & Rosu, H.C. & Jimenez, A. & Gutiérrez-Medina, B. & García-Meza, J.V., 2015. "The Hurst exponents of Nitzschia sp. diatom trajectories observed by light microscopy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 176-184.
    3. Toman, Kellan & Voulgarakis, Nikolaos K., 2022. "Stochastic pursuit-evasion curves for foraging dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    4. Chopra, Abha & Nanjundiah, Vidyanand, 2013. "The precision with which single cells of Dictyostelium discoideum can locate a source of cyclic AMP," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 3-12.
    5. Carlos Tamulonis & Marten Postma & Jaap Kaandorp, 2011. "Modeling Filamentous Cyanobacteria Reveals the Advantages of Long and Fast Trichomes for Optimizing Light Exposure," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-12, July.
    6. Haiyang Zhang & Zalman Vaksman & Douglas B Litwin & Peng Shi & Heidi B Kaplan & Oleg A Igoshin, 2012. "The Mechanistic Basis of Myxococcus xanthus Rippling Behavior and Its Physiological Role during Predation," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-13, September.
    7. Sui Huang, 2016. "Where to Go: Breaking the Symmetry in Cell Motility," PLOS Biology, Public Library of Science, vol. 14(5), pages 1-10, May.
    8. Can Guven & Erin Rericha & Edward Ott & Wolfgang Losert, 2013. "Modeling and Measuring Signal Relay in Noisy Directed Migration of Cell Groups," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-13, May.
    9. Yusuke T Maeda & Junya Inose & Miki Y Matsuo & Suguru Iwaya & Masaki Sano, 2008. "Ordered Patterns of Cell Shape and Orientational Correlation during Spontaneous Cell Migration," PLOS ONE, Public Library of Science, vol. 3(11), pages 1-14, November.
    10. Laurent Golé & Charlotte Rivière & Yoshinori Hayakawa & Jean-Paul Rieu, 2011. "A Quorum-Sensing Factor in Vegetative Dictyostelium Discoideum Cells Revealed by Quantitative Migration Analysis," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-9, November.
    11. Taeseok Daniel Yang & Jin-Sung Park & Youngwoon Choi & Wonshik Choi & Tae-Wook Ko & Kyoung J Lee, 2011. "Zigzag Turning Preference of Freely Crawling Cells," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-9, June.
    12. Hélia Serrano & Ramón F. Álvarez-Estrada, 2023. "Characterization of the Mean First-Passage Time Function Subject to Advection in Annular-like Domains," Mathematics, MDPI, vol. 11(24), pages 1-17, December.
    13. Oliver Nagel & Can Guven & Matthias Theves & Meghan Driscoll & Wolfgang Losert & Carsten Beta, 2014. "Geometry-Driven Polarity in Motile Amoeboid Cells," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-20, December.
    14. de Almeida, Rita M.C. & Giardini, Guilherme S.Y. & Vainstein, Mendeli & Glazier, James A. & Thomas, Gilberto L., 2022. "Exact solution for the Anisotropic Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    15. Peter J M Van Haastert, 2010. "A Model for a Correlated Random Walk Based on the Ordered Extension of Pseudopodia," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-11, August.
    16. Azevedo, T.N. & Rizzi, L.G., 2022. "Time-correlated forces and biological variability in cell motility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    17. Robert M Cooper & Ned S Wingreen & Edward C Cox, 2012. "An Excitable Cortex and Memory Model Successfully Predicts New Pseudopod Dynamics," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-12, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0021960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.