IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/3000551.html
   My bibliography  Save this article

Coinfections by noninteracting pathogens are not independent and require new tests of interaction

Author

Listed:
  • Frédéric M Hamelin
  • Linda J S Allen
  • Vrushali A Bokil
  • Louis J Gross
  • Frank M Hilker
  • Michael J Jeger
  • Carrie A Manore
  • Alison G Power
  • Megan A Rúa
  • Nik J Cunniffe

Abstract

If pathogen species, strains, or clones do not interact, intuition suggests the proportion of coinfected hosts should be the product of the individual prevalences. Independence consequently underpins the wide range of methods for detecting pathogen interactions from cross-sectional survey data. However, the very simplest of epidemiological models challenge the underlying assumption of statistical independence. Even if pathogens do not interact, death of coinfected hosts causes net prevalences of individual pathogens to decrease simultaneously. The induced positive correlation between prevalences means the proportion of coinfected hosts is expected to be higher than multiplication would suggest. By modelling the dynamics of multiple noninteracting pathogens causing chronic infections, we develop a pair of novel tests of interaction that properly account for nonindependence between pathogens causing lifelong infection. Our tests allow us to reinterpret data from previous studies including pathogens of humans, plants, and animals. Our work demonstrates how methods to identify interactions between pathogens can be updated using simple epidemic models.If pathogen species, strains, or clones do not interact, intuition suggests the proportion of coinfected hosts can be obtained by simply multiplying the individual prevalences. However, even simple epidemiological models show this to be untrue. This study develops new tests for interaction between pathogens that account for this surprising lack of statistical independence.

Suggested Citation

  • Frédéric M Hamelin & Linda J S Allen & Vrushali A Bokil & Louis J Gross & Frank M Hilker & Michael J Jeger & Carrie A Manore & Alison G Power & Megan A Rúa & Nik J Cunniffe, 2019. "Coinfections by noninteracting pathogens are not independent and require new tests of interaction," PLOS Biology, Public Library of Science, vol. 17(12), pages 1-25, December.
  • Handle: RePEc:plo:pbio00:3000551
    DOI: 10.1371/journal.pbio.3000551
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000551
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.3000551&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.3000551?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sourya Shrestha & Aaron A King & Pejman Rohani, 2011. "Statistical Inference for Multi-Pathogen Systems," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-14, August.
    2. Hanna Susi & Benoit Barrès & Pedro F. Vale & Anna-Liisa Laine, 2015. "Co-infection alters population dynamics of infectious disease," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    3. Eléonore Hellard & Dominique Pontier & Frank Sauvage & Hervé Poulet & David Fouchet, 2012. "True versus False Parasite Interactions: A Robust Method to Take Risk Factors into Account and Its Application to Feline Viruses," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-10, January.
    4. Kucharski, Adam J. & Gog, Julia R., 2012. "Age profile of immunity to influenza: Effect of original antigenic sin," Theoretical Population Biology, Elsevier, vol. 81(2), pages 102-112.
    5. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    6. P. Rohani & C. J. Green & N. B. Mantilla-Beniers & B. T. Grenfell, 2003. "Ecological interference between fatal diseases," Nature, Nature, vol. 422(6934), pages 885-888, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Usman Sanusi & Sona John & Johannes Mueller & Aurélien Tellier, 2022. "Quiescence Generates Moving Average in a Stochastic Epidemiological Model with One Host and Two Parasites," Mathematics, MDPI, vol. 10(13), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elise Vaumourin & Patrick Gasqui & Jean-Philippe Buffet & Jean-Louis Chapuis & Benoît Pisanu & Elisabeth Ferquel & Muriel Vayssier-Taussat & Gwenaël Vourc’h, 2013. "A Probabilistic Model in Cross-Sectional Studies for Identifying Interactions between Two Persistent Vector-Borne Pathogens in Reservoir Populations," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-9, June.
    2. Elina Numminen & Anna-Liisa Laine, 2020. "The spread of a wild plant pathogen is driven by the road network," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-21, March.
    3. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    4. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    5. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    6. Luc E. Coffeng & Sake J. de Vlas, 2022. "Predicting epidemics and the impact of interventions in heterogeneous settings: Standard SEIR models are too pessimistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 28-35, November.
    7. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    8. Kris V. Parag & Robin N. Thompson & Christl A. Donnelly, 2022. "Are epidemic growth rates more informative than reproduction numbers?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 5-15, November.
    9. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Maarten Jan Wensink & Linda Juel Ahrenfeldt & Sören Möller, 2020. "Variability Matters," IJERPH, MDPI, vol. 18(1), pages 1-8, December.
    11. Lingcai Kong & Jinfeng Wang & Weiguo Han & Zhidong Cao, 2016. "Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model," IJERPH, MDPI, vol. 13(3), pages 1-13, February.
    12. Carolyn Ingram & Vicky Downey & Mark Roe & Yanbing Chen & Mary Archibald & Kadri-Ann Kallas & Jaspal Kumar & Peter Naughton & Cyril Onwuelazu Uteh & Alejandro Rojas-Chaves & Shibu Shrestha & Shiraz Sy, 2021. "COVID-19 Prevention and Control Measures in Workplace Settings: A Rapid Review and Meta-Analysis," IJERPH, MDPI, vol. 18(15), pages 1-26, July.
    13. Fahlena, Hilda & Kusdiantara, Rudy & Nuraini, Nuning & Soewono, Edy, 2022. "Dynamical analysis of two-pathogen coinfection in influenza and other respiratory diseases," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    14. Wayne M. Getz & Jean-Paul Gonzalez & Richard Salter & James Bangura & Colin Carlson & Moinya Coomber & Eric Dougherty & David Kargbo & Nathan D. Wolfe & Nadia Wauquier, 2015. "Tactics and Strategies for Managing Ebola Outbreaks and the Salience of Immunization," Post-Print hal-01214432, HAL.
    15. Robin N Thompson & Christopher A Gilligan & Nik J Cunniffe, 2016. "Detecting Presymptomatic Infection Is Necessary to Forecast Major Epidemics in the Earliest Stages of Infectious Disease Outbreaks," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-18, April.
    16. Kathrin Büttner & Joachim Krieter & Arne Traulsen & Imke Traulsen, 2013. "Efficient Interruption of Infection Chains by Targeted Removal of Central Holdings in an Animal Trade Network," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-12, September.
    17. Bretó, Carles, 2014. "On idiosyncratic stochasticity of financial leverage effects," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 20-26.
    18. WHO-VMI Dengue Vaccine Modeling Group, 2012. "Assessing the Potential of a Candidate Dengue Vaccine with Mathematical Modeling," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 6(3), pages 1-6, March.
    19. Ellen Brooks-Pollock & Leon Danon & Hester Korthals Altes & Jennifer A Davidson & Andrew M T Pollock & Dick van Soolingen & Colin Campbell & Maeve K Lalor, 2020. "A model of tuberculosis clustering in low incidence countries reveals more transmission in the United Kingdom than the Netherlands between 2010 and 2015," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-14, March.
    20. Jonas I Liechti & Gabriel E Leventhal & Sebastian Bonhoeffer, 2017. "Host population structure impedes reversion to drug sensitivity after discontinuation of treatment," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-19, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:3000551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.