IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v422y2003i6934d10.1038_nature01542.html
   My bibliography  Save this article

Ecological interference between fatal diseases

Author

Listed:
  • P. Rohani

    (University of Georgia)

  • C. J. Green

    (University of Cambridge)

  • N. B. Mantilla-Beniers

    (University of Cambridge)

  • B. T. Grenfell

    (University of Cambridge)

Abstract

An important issue in population biology is the dynamic interaction between pathogens. Interest has focused mainly on the indirect interaction of pathogen strains, mediated by cross immunity1,2,3,4. However, a mechanism has recently been proposed for ‘ecological interference’ between pathogens through the removal of individuals from the susceptible pool after an acute infection. To explore this possibility, we have analysed and modelled historical measles and whooping cough records. Here we show that ecological interference is particularly strong when fatal infections permanently remove susceptibles. Disease interference has substantial dynamical consequences, making multi-annual outbreaks of different infections characteristically out of phase. So, when disease prevalence is high and is associated with significant mortality, it might be impossible to understand epidemic patterns by studying pathogens in isolation. This new ecological null model has important consequences for understanding the multi-strain dynamics of pathogens such as dengue and echoviruses.

Suggested Citation

  • P. Rohani & C. J. Green & N. B. Mantilla-Beniers & B. T. Grenfell, 2003. "Ecological interference between fatal diseases," Nature, Nature, vol. 422(6934), pages 885-888, April.
  • Handle: RePEc:nat:nature:v:422:y:2003:i:6934:d:10.1038_nature01542
    DOI: 10.1038/nature01542
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01542
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01542?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sourya Shrestha & Aaron A King & Pejman Rohani, 2011. "Statistical Inference for Multi-Pathogen Systems," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-14, August.
    2. Elise Vaumourin & Patrick Gasqui & Jean-Philippe Buffet & Jean-Louis Chapuis & Benoît Pisanu & Elisabeth Ferquel & Muriel Vayssier-Taussat & Gwenaël Vourc’h, 2013. "A Probabilistic Model in Cross-Sectional Studies for Identifying Interactions between Two Persistent Vector-Borne Pathogens in Reservoir Populations," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-9, June.
    3. Frédéric M Hamelin & Linda J S Allen & Vrushali A Bokil & Louis J Gross & Frank M Hilker & Michael J Jeger & Carrie A Manore & Alison G Power & Megan A Rúa & Nik J Cunniffe, 2019. "Coinfections by noninteracting pathogens are not independent and require new tests of interaction," PLOS Biology, Public Library of Science, vol. 17(12), pages 1-25, December.
    4. Hogan, Alexandra B. & Glass, Kathryn & Moore, Hannah C. & Anderssen, Robert S., 2016. "Exploring the dynamics of respiratory syncytial virus (RSV) transmission in children," Theoretical Population Biology, Elsevier, vol. 110(C), pages 78-85.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:422:y:2003:i:6934:d:10.1038_nature01542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.