IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0066167.html
   My bibliography  Save this article

A Probabilistic Model in Cross-Sectional Studies for Identifying Interactions between Two Persistent Vector-Borne Pathogens in Reservoir Populations

Author

Listed:
  • Elise Vaumourin
  • Patrick Gasqui
  • Jean-Philippe Buffet
  • Jean-Louis Chapuis
  • Benoît Pisanu
  • Elisabeth Ferquel
  • Muriel Vayssier-Taussat
  • Gwenaël Vourc’h

Abstract

Background: In natural populations, individuals are infected more often by several pathogens than by just one. In such a context, pathogens can interact. This interaction could modify the probability of infection by subsequent pathogens. Identifying when pathogen associations correspond to biological interactions is a challenge in cross-sectional studies where the sequence of infection cannot be demonstrated. Methodology/Principal Findings: Here we modelled the probability of an individual being infected by one and then another pathogen, using a probabilistic model and maximum likelihood statistics. Our model was developed to apply to cross-sectional data, vector-borne and persistent pathogens, and to take into account confounding factors. Our modelling approach was more powerful than the commonly used Chi-square test of independence. Our model was applied to detect potential interaction between Borrelia afzelii and Bartonella spp. that infected a bank vole population at 11% and 57% respectively. No interaction was identified. Conclusions/Significance: The modelling approach we proposed is powerful and can identify the direction of potential interaction. Such an approach can be adapted to other types of pathogens, such as non-persistents. The model can be used to identify when co-occurrence patterns correspond to pathogen interactions, which will contribute to understanding how organism communities are assembled and structured. In the long term, the model’s capacity to better identify pathogen interactions will improve understanding of infectious risk.

Suggested Citation

  • Elise Vaumourin & Patrick Gasqui & Jean-Philippe Buffet & Jean-Louis Chapuis & Benoît Pisanu & Elisabeth Ferquel & Muriel Vayssier-Taussat & Gwenaël Vourc’h, 2013. "A Probabilistic Model in Cross-Sectional Studies for Identifying Interactions between Two Persistent Vector-Borne Pathogens in Reservoir Populations," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-9, June.
  • Handle: RePEc:plo:pone00:0066167
    DOI: 10.1371/journal.pone.0066167
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0066167
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0066167&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0066167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jed A. Fuhrman, 2009. "Microbial community structure and its functional implications," Nature, Nature, vol. 459(7244), pages 193-199, May.
    2. Eléonore Hellard & Dominique Pontier & Frank Sauvage & Hervé Poulet & David Fouchet, 2012. "True versus False Parasite Interactions: A Robust Method to Take Risk Factors into Account and Its Application to Feline Viruses," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-10, January.
    3. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    4. D. Scott Merrell & Stanley Falkow, 2004. "Frontal and stealth attack strategies in microbial pathogenesis," Nature, Nature, vol. 430(6996), pages 250-256, July.
    5. P. Rohani & C. J. Green & N. B. Mantilla-Beniers & B. T. Grenfell, 2003. "Ecological interference between fatal diseases," Nature, Nature, vol. 422(6934), pages 885-888, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frédéric M Hamelin & Linda J S Allen & Vrushali A Bokil & Louis J Gross & Frank M Hilker & Michael J Jeger & Carrie A Manore & Alison G Power & Megan A Rúa & Nik J Cunniffe, 2019. "Coinfections by noninteracting pathogens are not independent and require new tests of interaction," PLOS Biology, Public Library of Science, vol. 17(12), pages 1-25, December.
    2. Fabrice Gilles & Sabina Issehnane & Florent Sari, 2022. "Using short-term jobs as a way to find a regular job. What kind of role for local context?," TEPP Working Paper 2022-07, TEPP.
    3. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    4. Cornelia Lawson, 2013. "Academic Inventions Outside the University: Investigating Patent Ownership in the UK," Industry and Innovation, Taylor & Francis Journals, vol. 20(5), pages 385-398, July.
    5. Vipin Arora & Shuping Shi, 2016. "Nonlinearities and tests of asset price bubbles," Empirical Economics, Springer, vol. 50(4), pages 1421-1433, June.
    6. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
    7. Da Fonseca José & Grasselli Martino & Ielpo Florian, 2014. "Estimating the Wishart Affine Stochastic Correlation Model using the empirical characteristic function," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 253-289, May.
    8. Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995. "Econometric Evaluation of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
    9. Das, Marcel & van Soest, Arthur, 1999. "A panel data model for subjective information on household income growth," Journal of Economic Behavior & Organization, Elsevier, vol. 40(4), pages 409-426, December.
    10. Gillespie, Colin S., 2015. "Fitting Heavy Tailed Distributions: The poweRlaw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i02).
    11. Luis Garicano & Thomas N. Hubbard, 2016. "The Returns to Knowledge Hierarchies," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 32(4), pages 653-684.
    12. Yen, Steven T. & Chern, Wen S. & Lee, Hwang-Jaw, 1991. "Effects Of Income Sources On Household Food Expenditures," 1991 Annual Meeting, August 4-7, Manhattan, Kansas 271167, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Adrian Bruhin & Ernst Fehr & Daniel Schunk, 2019. "The many Faces of Human Sociality: Uncovering the Distribution and Stability of Social Preferences," Journal of the European Economic Association, European Economic Association, vol. 17(4), pages 1025-1069.
    14. Bel, K. & Paap, R., 2013. "Modeling the impact of forecast-based regime switches on macroeconomic time series," Econometric Institute Research Papers EI 2013-25, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    15. Seok, Sang Ik & Cho, Hoon & Ryu, Doojin, 2020. "The information content of funds from operations and net income in real estate investment trusts," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    16. Downward, Paul & Rasciute, Simona, 2015. "Assessing the impact of the National Cycle Network and physical activity lifestyle on cycling behaviour in England," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 425-437.
    17. Filiz-Ozbay, Emel & Guryan, Jonathan & Hyndman, Kyle & Kearney, Melissa & Ozbay, Erkut Y., 2015. "Do lottery payments induce savings behavior? Evidence from the lab," Journal of Public Economics, Elsevier, vol. 126(C), pages 1-24.
    18. Arthur Caplan & John Gilbert, 2010. "Can fighting grade inflation help the bottom line?," Applied Economics Letters, Taylor & Francis Journals, vol. 17(17), pages 1663-1667.
    19. Mozhaeva, Irina, 2022. "Inequalities in utilization of institutional care among older people in Estonia," Health Policy, Elsevier, vol. 126(7), pages 704-714.
    20. Magnus, Jan R., 2007. "The Asymptotic Variance Of The Pseudo Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 23(5), pages 1022-1032, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0066167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.