IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v62y2011i1d10.1057_jors.2009.157.html
   My bibliography  Save this article

Rescheduling unrelated parallel machines with total flow time and total disruption cost criteria

Author

Listed:
  • M Ozlen

    (RMIT University)

  • M Azizoğlu

    (Middle East Technical University)

Abstract

In this paper, we consider a rescheduling problem where a set of jobs has already been assigned to unrelated parallel machines. When a disruption occurs on one of the machines, the affected jobs are rescheduled, considering the efficiency and the schedule deviation measures. The efficiency measure is the total flow time, and the schedule deviation measure is the total disruption cost caused by the differences between the initial and current schedules. We provide polynomial-time solution methods to the following hierarchical optimization problems: minimizing total disruption cost among the minimum total flow time schedules and minimizing total flow time among the minimum total disruption cost schedules. We propose exponential-time algorithms to generate all efficient solutions and to minimize a specified function of the measures. Our extensive computational tests on large size problem instances have revealed that our optimization algorithm finds the best solution by generating only a small portion of all efficient solutions.

Suggested Citation

  • M Ozlen & M Azizoğlu, 2011. "Rescheduling unrelated parallel machines with total flow time and total disruption cost criteria," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 152-164, January.
  • Handle: RePEc:pal:jorsoc:v:62:y:2011:i:1:d:10.1057_jors.2009.157
    DOI: 10.1057/jors.2009.157
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2009.157
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2009.157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James C. Bean & John R. Birge & John Mittenthal & Charles E. Noon, 1991. "Matchup Scheduling with Multiple Resources, Release Dates and Disruptions," Operations Research, INFORMS, vol. 39(3), pages 470-483, June.
    2. Ali Tamer Unal & Reha Uzsoy & Ali Kiran, 1997. "Rescheduling on a single machine with part-type dependent setup times and deadlines," Annals of Operations Research, Springer, vol. 70(0), pages 93-113, April.
    3. Joseph Y.‐T. Leung & Michael Pinedo, 2004. "A note on scheduling parallel machines subject to breakdown and repair," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(1), pages 60-71, February.
    4. Chung‐Yee Lee & Zhi‐Long Chen, 2000. "Scheduling jobs and maintenance activities on parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(2), pages 145-165, March.
    5. Aytug, Haldun & Lawley, Mark A. & McKay, Kenneth & Mohan, Shantha & Uzsoy, Reha, 2005. "Executing production schedules in the face of uncertainties: A review and some future directions," European Journal of Operational Research, Elsevier, vol. 161(1), pages 86-110, February.
    6. Qi, Xiangtong & Bard, Jonathan F. & Yu, Gang, 2006. "Disruption management for machine scheduling: The case of SPT schedules," International Journal of Production Economics, Elsevier, vol. 103(1), pages 166-184, September.
    7. Nicholas G. Hall & Chris N. Potts, 2004. "Rescheduling for New Orders," Operations Research, INFORMS, vol. 52(3), pages 440-453, June.
    8. Richard L. Daniels & Panagiotis Kouvelis, 1995. "Robust Scheduling to Hedge Against Processing Time Uncertainty in Single-Stage Production," Management Science, INFORMS, vol. 41(2), pages 363-376, February.
    9. A Lim & Z Xu, 2009. "Searching optimal resequencing and feature assignment on an automated assembly line," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 361-371, March.
    10. Suna Köksalan Kondakci & Meral Azizoglu & Murat Köksalan, 1996. "Note: Bicriteria scheduling for minimizing flow time and maximum tardiness," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(6), pages 929-936, September.
    11. T.C.E. Cheng & C.T. Ng & J.J. Yuan & Z.H. Liu, 2004. "Single machine parallel batch scheduling subject to precedence constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(7), pages 949-958, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaykrishnan, G. & Levin, Asaf, 2024. "Scheduling with cardinality dependent unavailability periods," European Journal of Operational Research, Elsevier, vol. 316(2), pages 443-458.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Yunqiang & Cheng, T.C.E. & Wang, Du-Juan, 2016. "Rescheduling on identical parallel machines with machine disruptions to minimize total completion time," European Journal of Operational Research, Elsevier, vol. 252(3), pages 737-749.
    2. Qi, Xiangtong & Bard, Jonathan F. & Yu, Gang, 2006. "Disruption management for machine scheduling: The case of SPT schedules," International Journal of Production Economics, Elsevier, vol. 103(1), pages 166-184, September.
    3. Liu, Zhixin & Lu, Liang & Qi, Xiangtong, 2018. "Cost allocation in rescheduling with machine unavailable period," European Journal of Operational Research, Elsevier, vol. 266(1), pages 16-28.
    4. Wang, Dujuan & Yin, Yunqiang & Cheng, T.C.E., 2018. "Parallel-machine rescheduling with job unavailability and rejection," Omega, Elsevier, vol. 81(C), pages 246-260.
    5. Wenchang Luo & Taibo Luo & Randy Goebel & Guohui Lin, 2018. "Rescheduling due to machine disruption to minimize the total weighted completion time," Journal of Scheduling, Springer, vol. 21(5), pages 565-578, October.
    6. Nicholas G. Hall & Chris N. Potts, 2010. "Rescheduling for Job Unavailability," Operations Research, INFORMS, vol. 58(3), pages 746-755, June.
    7. Al-Hinai, Nasr & ElMekkawy, T.Y., 2011. "Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm," International Journal of Production Economics, Elsevier, vol. 132(2), pages 279-291, August.
    8. Wenchang Luo & Rylan Chin & Alexander Cai & Guohui Lin & Bing Su & An Zhang, 2022. "A tardiness-augmented approximation scheme for rejection-allowed multiprocessor rescheduling," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 690-722, August.
    9. Qiulan Zhao & Lingfa Lu & Jinjiang Yuan, 2016. "Rescheduling with new orders and general maximum allowable time disruptions," 4OR, Springer, vol. 14(3), pages 261-280, September.
    10. Nicholas G. Hall & Chris N. Potts, 2004. "Rescheduling for New Orders," Operations Research, INFORMS, vol. 52(3), pages 440-453, June.
    11. Nicholas G. Hall & Zhixin Liu & Chris N. Potts, 2007. "Rescheduling for Multiple New Orders," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 633-645, November.
    12. Hoogeveen, H. & Lenté, C. & T’kindt, V., 2012. "Rescheduling for new orders on a single machine with setup times," European Journal of Operational Research, Elsevier, vol. 223(1), pages 40-46.
    13. Selcuk Goren & Ihsan Sabuncuoglu & Utku Koc, 2012. "Optimization of schedule stability and efficiency under processing time variability and random machine breakdowns in a job shop environment," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(1), pages 26-38, February.
    14. Qiulan Zhao & Jinjiang Yuan, 2017. "Rescheduling to Minimize the Maximum Lateness Under the Sequence Disruptions of Original Jobs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(05), pages 1-12, October.
    15. Gang Xuan & Win-Chin Lin & Shuenn-Ren Cheng & Wei-Lun Shen & Po-An Pan & Chih-Ling Kuo & Chin-Chia Wu, 2022. "A Robust Single-Machine Scheduling Problem with Two Job Parameter Scenarios," Mathematics, MDPI, vol. 10(13), pages 1-17, June.
    16. Zhao, Chuan-Li & Tang, Heng-Yong, 2010. "Scheduling deteriorating jobs under disruption," International Journal of Production Economics, Elsevier, vol. 125(2), pages 294-299, June.
    17. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Frank Werner, 2016. "Schedule robustness analysis with the help of attainable sets in continuous flow problem under capacity disruptions," International Journal of Production Research, Taylor & Francis Journals, vol. 54(11), pages 3397-3413, June.
    18. Aytug, Haldun & Lawley, Mark A. & McKay, Kenneth & Mohan, Shantha & Uzsoy, Reha, 2005. "Executing production schedules in the face of uncertainties: A review and some future directions," European Journal of Operational Research, Elsevier, vol. 161(1), pages 86-110, February.
    19. Alagoz, Oguzhan & Azizoglu, Meral, 2003. "Rescheduling of identical parallel machines under machine eligibility constraints," European Journal of Operational Research, Elsevier, vol. 149(3), pages 523-532, September.
    20. Cowling, Peter & Johansson, Marcus, 2002. "Using real time information for effective dynamic scheduling," European Journal of Operational Research, Elsevier, vol. 139(2), pages 230-244, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:62:y:2011:i:1:d:10.1057_jors.2009.157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.