IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v316y2024i2p443-458.html
   My bibliography  Save this article

Scheduling with cardinality dependent unavailability periods

Author

Listed:
  • Jaykrishnan, G.
  • Levin, Asaf

Abstract

We consider non-preemptive scheduling problems on parallel identical machines where machines change their status from being available to being unavailable and vice versa along the time horizon. The particular form of unavailability we consider is when the starting time of each downtime depends upon the cardinality of the job subset processed on that machine since the previous downtime. We consider the problem of minimizing the makespan in such scenarios as well as its dual problem where we have a fixed common deadline of 1 and the goal is to minimize the number of machines for which there is a feasible schedule. We develop an EPTAS for the first variant and an AFPTAS for the second variant.

Suggested Citation

  • Jaykrishnan, G. & Levin, Asaf, 2024. "Scheduling with cardinality dependent unavailability periods," European Journal of Operational Research, Elsevier, vol. 316(2), pages 443-458.
  • Handle: RePEc:eee:ejores:v:316:y:2024:i:2:p:443-458
    DOI: 10.1016/j.ejor.2024.02.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172400170X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.02.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Zhixin & Lu, Liang & Qi, Xiangtong, 2018. "Cost allocation in rescheduling with machine unavailable period," European Journal of Operational Research, Elsevier, vol. 266(1), pages 16-28.
    2. Schmidt, Gunter, 2000. "Scheduling with limited machine availability," European Journal of Operational Research, Elsevier, vol. 121(1), pages 1-15, February.
    3. M Ozlen & M Azizoğlu, 2011. "Rescheduling unrelated parallel machines with total flow time and total disruption cost criteria," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 152-164, January.
    4. Ping Ji & Lin Li, 2015. "Single-Machine Group Scheduling Problems with Variable Job Processing Times," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-9, July.
    5. Guoqing Wang & Hongyi Sun & Chengbin Chu, 2005. "Preemptive Scheduling with Availability Constraints to Minimize Total Weighted Completion Times," Annals of Operations Research, Springer, vol. 133(1), pages 183-192, January.
    6. H. Kellerer & U. Pferschy, 1999. "Cardinality constrained bin‐packing problems," Annals of Operations Research, Springer, vol. 92(0), pages 335-348, January.
    7. H. W. Lenstra, 1983. "Integer Programming with a Fixed Number of Variables," Mathematics of Operations Research, INFORMS, vol. 8(4), pages 538-548, November.
    8. Alberto Caprara & Hans Kellerer & Ulrich Pferschy, 2003. "Approximation schemes for ordered vector packing problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(1), pages 58-69, February.
    9. Vitaly A. Strusevich & Kabir Rustogi, 2017. "Scheduling with Flexible Maintenance," International Series in Operations Research & Management Science, in: Scheduling with Time-Changing Effects and Rate-Modifying Activities, chapter 0, pages 291-315, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imed Kacem, 2009. "Approximation algorithms for the makespan minimization with positive tails on a single machine with a fixed non-availability interval," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 117-133, February.
    2. Kacem, Imed & Chu, Chengbin, 2008. "Efficient branch-and-bound algorithm for minimizing the weighted sum of completion times on a single machine with one availability constraint," International Journal of Production Economics, Elsevier, vol. 112(1), pages 138-150, March.
    3. Mellouli, Racem & Sadfi, Chrif & Chu, Chengbin & Kacem, Imed, 2009. "Identical parallel-machine scheduling under availability constraints to minimize the sum of completion times," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1150-1165, September.
    4. Kerem Bülbül & Safia Kedad-Sidhoum & Halil Şen, 2019. "Single-machine common due date total earliness/tardiness scheduling with machine unavailability," Journal of Scheduling, Springer, vol. 22(5), pages 543-565, October.
    5. Shi-Sheng Li & Ren-Xia Chen, 2022. "Minimizing total weighted late work on a single-machine with non-availability intervals," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1330-1355, September.
    6. Hiroshi Fujiwara & Koji Kobayashi, 2015. "Improved lower bounds for the online bin packing problem with cardinality constraints," Journal of Combinatorial Optimization, Springer, vol. 29(1), pages 67-87, January.
    7. Kacem, Imed & Chu, Chengbin, 2008. "Worst-case analysis of the WSPT and MWSPT rules for single machine scheduling with one planned setup period," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1080-1089, June.
    8. Olivier Guyon & Pierre Lemaire & Éric Pinson & David Rivreau, 2014. "Solving an integrated job-shop problem with human resource constraints," Annals of Operations Research, Springer, vol. 213(1), pages 147-171, February.
    9. Wang, Xiuli & Cheng, T.C.E., 2015. "A heuristic for scheduling jobs on two identical parallel machines with a machine availability constraint," International Journal of Production Economics, Elsevier, vol. 161(C), pages 74-82.
    10. K. Aardal & R. E. Bixby & C. A. J. Hurkens & A. K. Lenstra & J. W. Smeltink, 2000. "Market Split and Basis Reduction: Towards a Solution of the Cornuéjols-Dawande Instances," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 192-202, August.
    11. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    12. Alberto Del Pia & Robert Hildebrand & Robert Weismantel & Kevin Zemmer, 2016. "Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 511-530, May.
    13. Gao, Evelyn & Sowlati, Taraneh & Akhtari, Shaghaygh, 2019. "Profit allocation in collaborative bioenergy and biofuel supply chains," Energy, Elsevier, vol. 188(C).
    14. Hongying Li & Chunjie Su, 2011. "An optimal semi-online algorithm for 2-machine scheduling with an availability constraint," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 153-165, August.
    15. Hanane Krim & Rachid Benmansour & David Duvivier & Daoud Aït-Kadi & Said Hanafi, 2020. "Heuristics for the single machine weighted sum of completion times scheduling problem with periodic maintenance," Computational Optimization and Applications, Springer, vol. 75(1), pages 291-320, January.
    16. Xu, Zhou, 2012. "A strongly polynomial FPTAS for the symmetric quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 377-381.
    17. Friedrich Eisenbrand & Gennady Shmonin, 2008. "Parametric Integer Programming in Fixed Dimension," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 839-850, November.
    18. Hnaien, Faicel & Yalaoui, Farouk & Mhadhbi, Ahmed, 2015. "Makespan minimization on a two-machine flowshop with an availability constraint on the first machine," International Journal of Production Economics, Elsevier, vol. 164(C), pages 95-104.
    19. Masing, Berenike & Lindner, Niels & Borndörfer, Ralf, 2022. "The price of symmetric line plans in the Parametric City," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 419-443.
    20. Danny Nguyen & Igor Pak, 2020. "The Computational Complexity of Integer Programming with Alternations," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 191-204, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:316:y:2024:i:2:p:443-458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.