IDEAS home Printed from https://ideas.repec.org/a/spr/aqjoor/v14y2016i3d10.1007_s10288-016-0308-0.html
   My bibliography  Save this article

Rescheduling with new orders and general maximum allowable time disruptions

Author

Listed:
  • Qiulan Zhao

    (Zhengzhou University)

  • Lingfa Lu

    (Zhengzhou University)

  • Jinjiang Yuan

    (Zhengzhou University)

Abstract

We study the rescheduling with new orders on a single machine under the general maximum allowable time disruptions. Under the restriction of general maximum allowable time disruptions, each original job has an upper bound for its time disruption (regarded as the maximum allowable time disruption of the job), or equivalently, in every feasible schedule, the difference of the completion time of each original job compared to that in the pre-schedule does not exceed its maximum allowable time disruption. We also consider a stronger restriction which additionally requires that, in a feasible schedule, the starting time of each original job is not allowed to be scheduled smaller than that in the pre-schedule. Scheduling objectives to be minimized are the maximum lateness and the total completion time, respectively, and the pre-schedules of original jobs are given by EDD-schedule and SPT-schedule, respectively. Then we have four problems for consideration. For the two problems for minimizing the maximum lateness, we present strong NP-hardness proof, provide a simple 2-approximation polynomial-time algorithm, and show that, unless $$\text {P}= \text {NP}$$ P = NP , the two problems cannot have an approximation polynomial-time algorithm with a performance ratio less than 2. For the two problems for minimizing the total completion time, we present strong NP-hardness proof, provide a simple heuristic algorithm, and show that, unless $$\text {P}= \text {NP}$$ P = NP , the two problems cannot have an approximation polynomial-time algorithm with a performance ratio less than 4/3. Moreover, by relaxing the maximum allowable time disruptions of the original jobs, we present a super-optimal dual-approximation polynomial-time algorithm. As a consequence, if the maximum allowable time disruption of each original job is at least its processing time, then the two problems for minimizing the total completion time are solvable in polynomial time. Finally, we show that, under the agreeability assumption (i.e., the nondecreasing order of the maximum allowable time disruptions of the original jobs coincides with their scheduling order in the pre-schedule), the four problems in consideration are solvable in polynomial time.

Suggested Citation

  • Qiulan Zhao & Lingfa Lu & Jinjiang Yuan, 2016. "Rescheduling with new orders and general maximum allowable time disruptions," 4OR, Springer, vol. 14(3), pages 261-280, September.
  • Handle: RePEc:spr:aqjoor:v:14:y:2016:i:3:d:10.1007_s10288-016-0308-0
    DOI: 10.1007/s10288-016-0308-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10288-016-0308-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10288-016-0308-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinjiang Yuan & Yundong Mu & Lingfa Lu & Wenhua Li, 2007. "Rescheduling With Release Dates To Minimize Total Sequence Disruption Under A Limit On The Makespan," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 24(06), pages 789-796.
    2. Ali Tamer Unal & Reha Uzsoy & Ali Kiran, 1997. "Rescheduling on a single machine with part-type dependent setup times and deadlines," Annals of Operations Research, Springer, vol. 70(0), pages 93-113, April.
    3. Le Liu & Hong Zhou, 2015. "Single-machine rescheduling with deterioration and learning effects against the maximum sequence disruption," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(14), pages 2640-2658, October.
    4. Koulamas, Christos & Kyparisis, George J., 2001. "Single machine scheduling with release times, deadlines and tardiness objectives," European Journal of Operational Research, Elsevier, vol. 133(2), pages 447-453, January.
    5. Nicholas G. Hall & Zhixin Liu & Chris N. Potts, 2007. "Rescheduling for Multiple New Orders," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 633-645, November.
    6. Aytug, Haldun & Lawley, Mark A. & McKay, Kenneth & Mohan, Shantha & Uzsoy, Reha, 2005. "Executing production schedules in the face of uncertainties: A review and some future directions," European Journal of Operational Research, Elsevier, vol. 161(1), pages 86-110, February.
    7. Yuan, Jinjiang & Mu, Yundong, 2007. "Rescheduling with release dates to minimize makespan under a limit on the maximum sequence disruption," European Journal of Operational Research, Elsevier, vol. 182(2), pages 936-944, October.
    8. Hoogeveen, H. & Lenté, C. & T’kindt, V., 2012. "Rescheduling for new orders on a single machine with setup times," European Journal of Operational Research, Elsevier, vol. 223(1), pages 40-46.
    9. Nicholas G. Hall & Chris N. Potts, 2004. "Rescheduling for New Orders," Operations Research, INFORMS, vol. 52(3), pages 440-453, June.
    10. Wayne E. Smith, 1956. "Various optimizers for single‐stage production," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 59-66, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenchang Luo & Rylan Chin & Alexander Cai & Guohui Lin & Bing Su & An Zhang, 2022. "A tardiness-augmented approximation scheme for rejection-allowed multiprocessor rescheduling," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 690-722, August.
    2. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    3. Xingong Zhang & Win-Chin Lin & Chin-Chia Wu, 2022. "Rescheduling problems with allowing for the unexpected new jobs arrival," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 630-645, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Yunqiang & Cheng, T.C.E. & Wang, Du-Juan, 2016. "Rescheduling on identical parallel machines with machine disruptions to minimize total completion time," European Journal of Operational Research, Elsevier, vol. 252(3), pages 737-749.
    2. Wenchang Luo & Taibo Luo & Randy Goebel & Guohui Lin, 2018. "Rescheduling due to machine disruption to minimize the total weighted completion time," Journal of Scheduling, Springer, vol. 21(5), pages 565-578, October.
    3. Xingong Zhang & Win-Chin Lin & Chin-Chia Wu, 2022. "Rescheduling problems with allowing for the unexpected new jobs arrival," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 630-645, April.
    4. Qiulan Zhao & Jinjiang Yuan, 2017. "Rescheduling to Minimize the Maximum Lateness Under the Sequence Disruptions of Original Jobs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(05), pages 1-12, October.
    5. Liu, Zhixin & Lu, Liang & Qi, Xiangtong, 2018. "Cost allocation in rescheduling with machine unavailable period," European Journal of Operational Research, Elsevier, vol. 266(1), pages 16-28.
    6. Hoogeveen, H. & Lenté, C. & T’kindt, V., 2012. "Rescheduling for new orders on a single machine with setup times," European Journal of Operational Research, Elsevier, vol. 223(1), pages 40-46.
    7. Paz Perez-Gonzalez & Jose M. Framinan, 2018. "Single machine interfering jobs problem with flowtime objective," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 953-972, June.
    8. Wang, Dujuan & Yin, Yunqiang & Cheng, T.C.E., 2018. "Parallel-machine rescheduling with job unavailability and rejection," Omega, Elsevier, vol. 81(C), pages 246-260.
    9. Perez-Gonzalez, Paz & Framinan, Jose M., 2014. "A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 1-16.
    10. Nicholas G. Hall & Chris N. Potts, 2010. "Rescheduling for Job Unavailability," Operations Research, INFORMS, vol. 58(3), pages 746-755, June.
    11. M Ozlen & M Azizoğlu, 2011. "Rescheduling unrelated parallel machines with total flow time and total disruption cost criteria," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 152-164, January.
    12. Wenchang Luo & Rylan Chin & Alexander Cai & Guohui Lin & Bing Su & An Zhang, 2022. "A tardiness-augmented approximation scheme for rejection-allowed multiprocessor rescheduling," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 690-722, August.
    13. Liu, Weihua & Liang, Zhicheng & Ye, Zi & Liu, Liang, 2016. "The optimal decision of customer order decoupling point for order insertion scheduling in logistics service supply chain," International Journal of Production Economics, Elsevier, vol. 175(C), pages 50-60.
    14. Qi, Xiangtong & Bard, Jonathan F. & Yu, Gang, 2006. "Disruption management for machine scheduling: The case of SPT schedules," International Journal of Production Economics, Elsevier, vol. 103(1), pages 166-184, September.
    15. Yuhe Shi & Zhenggang He, 2018. "Decision Analysis of Disturbance Management in the Process of Medical Supplies Transportation after Natural Disasters," IJERPH, MDPI, vol. 15(8), pages 1-18, August.
    16. Xiangtong Qi, 2005. "A logistics scheduling model: Inventory cost reduction by batching," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(4), pages 312-320, June.
    17. Li, Chung-Lun & Li, Feng, 2020. "Rescheduling production and outbound deliveries when transportation service is disrupted," European Journal of Operational Research, Elsevier, vol. 286(1), pages 138-148.
    18. Ulrich Pferschy & Julia Resch & Giovanni Righini, 2023. "Algorithms for rescheduling jobs with a LIFO buffer to minimize the weighted number of late jobs," Journal of Scheduling, Springer, vol. 26(3), pages 267-287, June.
    19. Yin, Yunqiang & Luo, Zunhao & Wang, Dujuan & Cheng, T.C.E., 2023. "Wasserstein distance‐based distributionally robust parallel‐machine scheduling," Omega, Elsevier, vol. 120(C).
    20. Gerichhausen, Marloes & Hamers, Herbert, 2009. "Partitioning sequencing situations and games," European Journal of Operational Research, Elsevier, vol. 196(1), pages 207-216, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aqjoor:v:14:y:2016:i:3:d:10.1007_s10288-016-0308-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.