IDEAS home Printed from https://ideas.repec.org/a/oup/jcomle/v14y2018i4p568-607..html
   My bibliography  Save this article

Algorithms, Machine Learning, And Collusion

Author

Listed:
  • Ulrich Schwalbe

Abstract

This paper discusses whether self-learning price-setting algorithms can coordinate their pricing behavior to achieve a collusive outcome that maximizes the joint profits of the firms using them. Although legal scholars have generally assumed that algorithmic collusion is not only possible but also exceptionally easy, computer scientists examining cooperation between algorithms as well as economists investigating collusion in experimental oligopolies have countered that coordinated, tacitly collusive behavior is not as rapid, easy, or even inevitable as often suggested. Research in experimental economics has shown that the exchange of information is vital to collusion when more than two firms operate within a given market. Communication between algorithms is also a topic in research on artificial intelligence, in which some scholars have recently indicated that algorithms can learn to communicate, albeit in somewhat limited ways. Taken together, algorithmic collusion currently seems far more difficult to achieve than legal scholars have often assumed and is thus not a particularly relevant competitive concern at present. Moreover, there are several legal problems associated with algorithmic collusion, including questions of liability, of auditing and monitoring algorithms, and of enforcing competition law.

Suggested Citation

  • Ulrich Schwalbe, 2018. "Algorithms, Machine Learning, And Collusion," Journal of Competition Law and Economics, Oxford University Press, vol. 14(4), pages 568-607.
  • Handle: RePEc:oup:jcomle:v:14:y:2018:i:4:p:568-607.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/joclec/nhz004
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano Colombo & Aldo Pignataro, 2022. "Information accuracy and collusion," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(3), pages 638-656, August.
    2. Werner, Tobias, 2021. "Algorithmic and human collusion," DICE Discussion Papers 372, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    3. Igor Sadoune & Andrea Lodi & Marcelin Joanis, 2022. "Implementing a Hierarchical Deep Learning Approach for Simulating Multi-Level Auction Data," Papers 2207.12255, arXiv.org, revised Feb 2024.
    4. Juan Manuel Sánchez-Cartas & Alberto Tejero & Gonzalo León, 2021. "Algorithmic Pricing and Price Gouging. Consequences of High-Impact, Low Probability Events," Sustainability, MDPI, vol. 13(5), pages 1-14, February.
    5. Martin, Simon & Rasch, Alexander, 2022. "Collusion by algorithm: The role of unobserved actions," DICE Discussion Papers 382, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    6. Xingchen Xu & Stephanie Lee & Yong Tan, 2023. "Algorithmic Collusion or Competition: the Role of Platforms' Recommender Systems," Papers 2309.14548, arXiv.org.
    7. Thomas Loots & Arnoud V. den Boer, 2023. "Data‐driven collusion and competition in a pricing duopoly with multinomial logit demand," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1169-1186, April.
    8. Simon Martin & Alexander Rasch, 2022. "Collusion by Algorithm: The Role of Unobserved Actions," CESifo Working Paper Series 9629, CESifo.
    9. Oliver Budzinski & Victoriia Noskova & Xijie Zhang, 2019. "The brave new world of digital personal assistants: benefits and challenges from an economic perspective," Netnomics, Springer, vol. 20(2), pages 177-194, December.
    10. Florian Peiseler & Alexander Rasch & Shiva Shekhar, 2022. "Imperfect information, algorithmic price discrimination, and collusion," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(2), pages 516-549, April.
    11. Budzinski, Oliver & Kuchinke, Björn, 2018. "Modern industrial organization theory of media markets and competition policy implications," Ilmenau Economics Discussion Papers 115, Ilmenau University of Technology, Institute of Economics.
    12. João E. Gata, 2019. "Controlling Algorithmic Collusion: short review of the literature, undecidability, and alternative approaches," Working Papers REM 2019/77, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    13. Oliver Budzinski & Annika Stöhr, 2019. "Competition policy reform in Europe and Germany – institutional change in the light of digitization," European Competition Journal, Taylor & Francis Journals, vol. 15(1), pages 15-54, January.
    14. Wolfram Barfuss & Janusz Meylahn, 2022. "Intrinsic fluctuations of reinforcement learning promote cooperation," Papers 2209.01013, arXiv.org, revised Feb 2023.
    15. Gaenssle, Sophia & Budzinski, Oliver, 2019. "Stars in social media: New light through old windows?," Ilmenau Economics Discussion Papers 123, Ilmenau University of Technology, Institute of Economics.
    16. Aleksandar B. Todorov, 2022. "Algorithmic pricing and concerted behaviour – competitive challenges?," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 1, pages 90-107.
    17. Peter Seele & Claus Dierksmeier & Reto Hofstetter & Mario D. Schultz, 2021. "Mapping the Ethicality of Algorithmic Pricing: A Review of Dynamic and Personalized Pricing," Journal of Business Ethics, Springer, vol. 170(4), pages 697-719, May.
    18. Hans-Theo Normann & Martin Sternberg, 2021. "Human-Algorithm Interaction: Algorithmic Pricing in Hybrid Laboratory Markets," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2021_11, Max Planck Institute for Research on Collective Goods, revised 13 Apr 2022.
    19. Marcel Wieting & Geza Sapi, 2021. "Algorithms in the Marketplace: An Empirical Analysis of Automated Pricing in E-Commerce," Working Papers 21-06, NET Institute.
    20. Frédéric Marty & Thierry Warin, 2023. "Deciphering Algorithmic Collusion: Insights from Bandit Algorithms and Implications for Antitrust Enforcement," CIRANO Working Papers 2023s-26, CIRANO.
    21. Haucap, Justus, 2021. "Mögliche Wohlfahrtswirkungen eines Einsatzes von Algorithmen," DICE Ordnungspolitische Perspektiven 109, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jcomle:v:14:y:2018:i:4:p:568-607.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/jcle .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.