IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2309.14548.html
   My bibliography  Save this paper

Algorithmic Collusion or Competition: the Role of Platforms' Recommender Systems

Author

Listed:
  • Xingchen Xu
  • Stephanie Lee
  • Yong Tan

Abstract

Recent scholarly work has extensively examined the phenomenon of algorithmic collusion driven by AI-enabled pricing algorithms. However, online platforms commonly deploy recommender systems that influence how consumers discover and purchase products, thereby shaping the reward structures faced by pricing algorithms and ultimately affecting competition dynamics and equilibrium outcomes. To address this gap in the literature and elucidate the role of recommender systems, we propose a novel repeated game framework that integrates several key components. We first develop a structural search model to characterize consumers' decision-making processes in response to varying recommendation sets. This model incorporates both observable and unobservable heterogeneity in utility and search cost functions, and is estimated using real-world data. Building on the resulting consumer model, we formulate personalized recommendation algorithms designed to maximize either platform revenue or consumer utility. We further introduce pricing algorithms for sellers and integrate all these elements to facilitate comprehensive numerical experiments. Our experimental findings reveal that a revenue-maximizing recommender system intensifies algorithmic collusion, whereas a utility-maximizing recommender system encourages more competitive pricing behavior among sellers. Intriguingly, and contrary to conventional insights from the industrial organization and choice modeling literature, increasing the size of recommendation sets under a utility-maximizing regime does not consistently enhance consumer utility. Moreover, the degree of horizontal differentiation moderates this phenomenon in unexpected ways. The "more is less" effect does not arise at low levels of differentiation, but becomes increasingly pronounced as horizontal differentiation increases.

Suggested Citation

  • Xingchen Xu & Stephanie Lee & Yong Tan, 2023. "Algorithmic Collusion or Competition: the Role of Platforms' Recommender Systems," Papers 2309.14548, arXiv.org, revised Dec 2024.
  • Handle: RePEc:arx:papers:2309.14548
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2309.14548
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephanie Assad & Robert Clark & Daniel Ershov & Lei Xu, 2020. "Algorithmic Pricing and Competition: Empirical Evidence from the German Retail Gasoline Market," CESifo Working Paper Series 8521, CESifo.
    2. Marcel Wieting & Geza Sapi, 2021. "Algorithms in the Marketplace: An Empirical Analysis of Automated Pricing in E-Commerce," Working Papers 21-06, NET Institute.
    3. Timo Klein, 2021. "Autonomous algorithmic collusion: Q‐learning under sequential pricing," RAND Journal of Economics, RAND Corporation, vol. 52(3), pages 538-558, September.
    4. Bo Zhou & Tianxin Zou, 2023. "Competing for Recommendations: The Strategic Impact of Personalized Product Recommendations in Online Marketplaces," Marketing Science, INFORMS, vol. 42(2), pages 360-376, March.
    5. Ulrich Schwalbe, 2018. "Algorithms, Machine Learning, And Collusion," Journal of Competition Law and Economics, Oxford University Press, vol. 14(4), pages 568-607.
    6. Benjamin Edelman & Julian Wright, 2015. "Price Coherence and Excessive Intermediation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(3), pages 1283-1328.
    7. Guofu Tan & Junjie Zhou, 2021. "The Effects of Competition and Entry in Multi-sided Markets," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(2), pages 1002-1030.
    8. Waltman, Ludo & Kaymak, Uzay, 2008. "Q-learning agents in a Cournot oligopoly model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3275-3293, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frédéric Marty & Thierry Warin, 2023. "Deciphering Algorithmic Collusion: Insights from Bandit Algorithms and Implications for Antitrust Enforcement," CIRANO Working Papers 2023s-26, CIRANO.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Werner, Tobias, 2021. "Algorithmic and human collusion," DICE Discussion Papers 372, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    2. Fourberg, Niklas & Marques-Magalhaes, Katrin & Wiewiorra, Lukas, 2022. "They are among us: Pricing behavior of algorithms in the field," WIK Working Papers 6, WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH, Bad Honnef.
    3. Simon Martin & Alexander Rasch, 2022. "Collusion by Algorithm: The Role of Unobserved Actions," CESifo Working Paper Series 9629, CESifo.
    4. Fourberg, Niklas & Marques Magalhaes, Katrin & Wiewiorra, Lukas, 2023. "They Are Among Us: Pricing Behavior of Algorithms in the Field," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 277958, International Telecommunications Society (ITS).
    5. Martin, Simon & Rasch, Alexander, 2022. "Collusion by algorithm: The role of unobserved actions," DICE Discussion Papers 382, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    6. Martin, Simon & Rasch, Alexander, 2024. "Demand forecasting, signal precision, and collusion with hidden actions," International Journal of Industrial Organization, Elsevier, vol. 92(C).
    7. Justin P. Johnson & Andrew Rhodes & Matthijs Wildenbeest, 2023. "Platform Design When Sellers Use Pricing Algorithms," Econometrica, Econometric Society, vol. 91(5), pages 1841-1879, September.
    8. Normann, Hans-Theo & Sternberg, Martin, 2023. "Human-algorithm interaction: Algorithmic pricing in hybrid laboratory markets," European Economic Review, Elsevier, vol. 152(C).
    9. Joseph E. Harrington, 2022. "The Effect of Outsourcing Pricing Algorithms on Market Competition," Management Science, INFORMS, vol. 68(9), pages 6889-6906, September.
    10. Hans-Theo Normann & Martin Sternberg, 2021. "Human-Algorithm Interaction: Algorithmic Pricing in Hybrid Laboratory Markets," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2021_11, Max Planck Institute for Research on Collective Goods, revised 13 Apr 2022.
    11. Werner, Tobias, 2023. "Algorithmic and Human Collusion," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277573, Verein für Socialpolitik / German Economic Association.
    12. Lucila Porto, 2022. "Q-Learning algorithms in a Hotelling model," Asociación Argentina de Economía Política: Working Papers 4587, Asociación Argentina de Economía Política.
    13. Bingyan Han, 2021. "Understanding algorithmic collusion with experience replay," Papers 2102.09139, arXiv.org, revised Mar 2021.
    14. Marcel Wieting & Geza Sapi, 2021. "Algorithms in the Marketplace: An Empirical Analysis of Automated Pricing in E-Commerce," Working Papers 21-06, NET Institute.
    15. Arnoud V. den Boer & Janusz M. Meylahn & Maarten Pieter Schinkel, 2022. "Artificial Collusion: Examining Supracompetitive Pricing by Q-learning Algorithms," Tinbergen Institute Discussion Papers 22-067/VII, Tinbergen Institute.
    16. Martin Peitz, 2024. "The Economic Theory of Two-Sided Platforms," CRC TR 224 Discussion Paper Series crctr224_2024_584, University of Bonn and University of Mannheim, Germany.
    17. Gonzalo Ballestero, 2021. "Collusion and Artificial Intelligence: A computational experiment with sequential pricing algorithms under stochastic costs," Young Researchers Working Papers 1, Universidad de San Andres, Departamento de Economia, revised Oct 2022.
    18. Epivent, Andréa & Lambin, Xavier, 2024. "On algorithmic collusion and reward–punishment schemes," Economics Letters, Elsevier, vol. 237(C).
    19. Jason D. Hartline & Sheng Long & Chenhao Zhang, 2024. "Regulation of Algorithmic Collusion," Papers 2401.15794, arXiv.org, revised Sep 2024.
    20. Martin Peitz, 2023. "Governance and Regulation of Platforms," CRC TR 224 Discussion Paper Series crctr224_2023_480, University of Bonn and University of Mannheim, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2309.14548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.