IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-04745409.html
   My bibliography  Save this paper

Deciphering Algorithmic Collusion: Insights from Bandit Algorithms and Implications for Antitrust Enforcement

Author

Listed:
  • Frédéric Marty

    (GREDEG - Groupe de Recherche en Droit, Economie et Gestion - UNS - Université Nice Sophia Antipolis (1965 - 2019) - CNRS - Centre National de la Recherche Scientifique - UniCA - Université Côte d'Azur)

  • Thierry Warin

    (CIRANO - Centre interuniversitaire de recherche en analyse des organisations - UQAM - Université du Québec à Montréal = University of Québec in Montréal)

Abstract

This paper explores algorithmic collusion from both legal and economic perspectives, underscoring the increasing influence of algorithms in firms' market decisions and their potential to facilitate anti-competitive behavior. By employing bandit algorithms as a model—typically used in uncertain decision-making scenarios—we shed light on the mechanisms of implicit collusion that occur without explicit communication. Legally, the primary challenge lies in detecting and categorizing possible algorithmic signals, particularly when they function as unilateral communications. Economically, the task of distinguishing between rational pricing strategies and collusive patterns becomes increasingly complex in the context of algorithm-driven decisions. The paper stresses the need for competition authorities to identify atypical market behaviors. Striking a balance between algorithmic transparency and the prevention of collusion is critical. While regulatory measures could mitigate collusive risks, they might also impede the development of algorithmic technologies. As this form of collusion gains prominence in competition law and economics discussions, understanding it through models like bandit algorithms becomes essential, especially since these algorithms have the potential to converge more rapidly toward supra-competitive prices equilibria

Suggested Citation

  • Frédéric Marty & Thierry Warin, 2024. "Deciphering Algorithmic Collusion: Insights from Bandit Algorithms and Implications for Antitrust Enforcement," Post-Print halshs-04745409, HAL.
  • Handle: RePEc:hal:journl:halshs-04745409
    DOI: 10.1016/j.ject.2024.10.001
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-04745409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.