Implementing a Hierarchical Deep Learning Approach for Simulating Multi-Level Auction Data
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Igor Sadoune & Marcelin Joanis & Andrea Lodi, 2023. "Implementing a Hierarchical Deep Learning Approach for Simulating multilevel Auction Data," CIRANO Working Papers 2023s-23, CIRANO.
References listed on IDEAS
- David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
- Joshua Angrist & Pierre Azoulay & Glenn Ellison & Ryan Hill & Susan Feng Lu, 2017. "Economic Research Evolves: Fields and Styles," American Economic Review, American Economic Association, vol. 107(5), pages 293-297, May.
- Green, Edward J & Porter, Robert H, 1984.
"Noncooperative Collusion under Imperfect Price Information,"
Econometrica, Econometric Society, vol. 52(1), pages 87-100, January.
- Green, Edward J. & Porter, Robert H., 1982. "Noncooperative Collusion Under Imperfect Price Information," Working Papers 367, California Institute of Technology, Division of the Humanities and Social Sciences.
- Edward J Green & Robert H Porter, 1997. "Noncooperative Collusion Under Imperfect Price Information," Levine's Working Paper Archive 1147, David K. Levine.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
- Takahashi, Shuntaro & Chen, Yu & Tanaka-Ishii, Kumiko, 2019. "Modeling financial time-series with generative adversarial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
- Steven O. Kimbrough & Ming Lu & Frederic Murphy, 2005. "Learning and Tacit Collusion by Artificial Agents in Cournot Duopoly Games," International Handbooks on Information Systems, in: Steven O. Kimbrough & D.J. Wu (ed.), Formal Modelling in Electronic Commerce, pages 477-492, Springer.
- Skrzypacz, Andrzej & Hopenhayn, Hugo, 2004.
"Tacit collusion in repeated auctions,"
Journal of Economic Theory, Elsevier, vol. 114(1), pages 153-169, January.
- Hopenhayn, Hugo A. & Skrzypacz, Andrzej, 2001. "Tacit Collusion in Repeated Auctions," Research Papers 1698r2, Stanford University, Graduate School of Business.
- Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
- Athey, Susan & Imbens, Guido W., 2019.
"Machine Learning Methods Economists Should Know About,"
Research Papers
3776, Stanford University, Graduate School of Business.
- Susan Athey & Guido Imbens, 2019. "Machine Learning Methods Economists Should Know About," Papers 1903.10075, arXiv.org.
- Ulrich Schwalbe, 2018. "Algorithms, Machine Learning, And Collusion," Journal of Competition Law and Economics, Oxford University Press, vol. 14(4), pages 568-607.
- Jeanine Miklós-Thal & Catherine Tucker, 2019. "Collusion by Algorithm: Does Better Demand Prediction Facilitate Coordination Between Sellers?," Management Science, INFORMS, vol. 65(4), pages 1552-1561, April.
- Youri Chassin & Marcelin Joanis, 2010. "Détecter et prévenir la collusion dans les marchés publics en construction: Meilleures pratiques favorisant la concurrence," CIRANO Project Reports 2010rp-13, CIRANO.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
- Daniel Levy & Tamir Mayer & Alon Raviv, 2020.
"Academic Scholarship in Light of the 2008 Financial Crisis: Textual Analysis of NBER Working Papers,"
Working Papers
hal-02488796, HAL.
- Daniel Levy & Tamir Mayer & Alon Raviv, 2020. "Academic Scholarship in Light of the 2008 Financial Crisis: Textual Analysis of NBER Working Papers," Working Papers 2020-01, Bar-Ilan University, Department of Economics.
- Levy, Daniel & Mayer, Tamir & Raviv, Alon, 2020. "Academic Scholarship in Light of the 2008 Financial Crisis: Textual Analysis of NBER Working Papers," MPRA Paper 98785, University Library of Munich, Germany.
- Daniel Levy & Tamir Mayer & Alon Raviv, 2020. "Academic Scholarship in Light of the 2008 Financial Crisis: Textual Analysis of NBER Working Papers," Working Paper series 20-05, Rimini Centre for Economic Analysis.
- Levy, Daniel & Mayer, Tamir & Raviv, Alon, 2020. "Academic Scholarship in Light of the 2008 Financial Crisis: Textual Analysis of NBER Working Papers," EconStor Preprints 214194, ZBW - Leibniz Information Centre for Economics.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022.
"Urban economics in a historical perspective: Recovering data with machine learning,"
Regional Science and Urban Economics, Elsevier, vol. 94(C).
- Gobillon, Laurent & Combes, Pierre-Philippe & Zylberberg, Yanos, 2020. "Urban economics in a historical perspective: Recovering data with machine learning," CEPR Discussion Papers 15308, C.E.P.R. Discussion Papers.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," PSE-Ecole d'économie de Paris (Postprint) halshs-03673240, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," Post-Print halshs-03673240, HAL.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2021. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," IZA Discussion Papers 14392, Institute of Labor Economics (IZA).
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," PSE Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," SciencePo Working papers Main halshs-03673240, HAL.
- Arenas, Andreu & Calsamiglia, Caterina, 2022.
"Gender Differences in High-Stakes Performance and College Admission Policies,"
IZA Discussion Papers
15550, Institute of Labor Economics (IZA).
- Andreu Arenas & Caterina Calsamiglia, 2023. "Gender Differences in High-Stakes Performance and College Admission Policies," Working Papers 2023/13, Institut d'Economia de Barcelona (IEB).
- Tsang, Andrew, 2021.
"Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy,"
MPRA Paper
110703, University Library of Munich, Germany.
- Tsang, Andrew, 2021. "Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy," WiSo-HH Working Paper Series 62, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
- Dang,Hai-Anh H. & Kilic,Talip & Carletto,Calogero & Abanokova,Kseniya, 2021.
"Poverty Imputation in Contexts without Consumption Data : A Revisit with Further Refinements,"
Policy Research Working Paper Series
9838, The World Bank.
- Dang, Hai-Anh H & Kilic, Talip & Abanokova, Kseniya & Carletto, Calogero, 2023. "Poverty Imputation in Contexts without Consumption Data: A Revisit with Further Refinements," IZA Discussion Papers 15873, Institute of Labor Economics (IZA).
- Dang, Hai-Anh H. & Kilic, Talip & Abanokova, Kseniya & Carletto, Calogero, 2023. "Poverty Imputation in Contexts without Consumption Data: A Revisit with Further Refinements," GLO Discussion Paper Series 1226, Global Labor Organization (GLO).
- Dang, Hai-Anh H. & Kilic, Talip & Abanokova, Kseniya & Carletto, Calogero, 2024. "Poverty imputation in contexts without consumption data: a revisit with further refinements," LSE Research Online Documents on Economics 125798, London School of Economics and Political Science, LSE Library.
- Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
- Blankenship, Brian & Aklin, Michaël & Urpelainen, Johannes & Nandan, Vagisha, 2022. "Jobs for a just transition: Evidence on coal job preferences from India," Energy Policy, Elsevier, vol. 165(C).
- Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
- Donna B. Gilleskie, 2021. "In sickness and in health, until death do us part: A case for theory," Southern Economic Journal, John Wiley & Sons, vol. 87(3), pages 753-768, January.
- Askitas, Nikos, 2024.
"A Hands-on Machine Learning Primer for Social Scientists: Math, Algorithms and Code,"
IZA Discussion Papers
17014, Institute of Labor Economics (IZA).
- Nikos Askitas & Nikolaos Askitas, 2024. "A Hands-On Machine Learning Primer for Social Scientists: Math, Algorithms and Code," CESifo Working Paper Series 11353, CESifo.
- Arthur Charpentier & Romuald Élie & Carl Remlinger, 2023. "Reinforcement Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 425-462, June.
- Sarr, Ibrahima & Dang, Hai-Anh H. & Guzman Gutierrez, Carlos Santiago & Beltramo, Theresa & Verme, Paolo, 2024.
"Using Cross-Survey Imputation to Estimate Poverty for Venezuelan Refugees in Colombia,"
GLO Discussion Paper Series
1534, Global Labor Organization (GLO).
- Sarr, Ibrahima & Dang, Hai-Anh H & Gutierrez, Carlos Santiago Guzman & Beltramo, Theresa & Verme, Paolo, 2024. "Using Cross-Survey Imputation to Estimate Poverty for Venezuelan Refugees in Colombia," IZA Discussion Papers 17036, Institute of Labor Economics (IZA).
- Mona Aghdaee & Bonny Parkinson & Kompal Sinha & Yuanyuan Gu & Rajan Sharma & Emma Olin & Henry Cutler, 2022. "An examination of machine learning to map non‐preference based patient reported outcome measures to health state utility values," Health Economics, John Wiley & Sons, Ltd., vol. 31(8), pages 1525-1557, August.
- Lily Davies & Mark Kattenberg & Benedikt Vogt, 2023. "Predicting Firm Exits with Machine Learning: Implications for Selection into COVID-19 Support and Productivity Growth," CPB Discussion Paper 444, CPB Netherlands Bureau for Economic Policy Analysis.
- Levy, Daniel & Mayer, Tamir & Raviv, Alon, 2022.
"Economists in the 2008 financial crisis: Slow to see, fast to act,"
Journal of Financial Stability, Elsevier, vol. 60(C).
- Levy, Daniel & Mayer, Tamir & Raviv, Alon, 2022. "Economists in the 2008 Financial Crisis: Slow to See, Fast to Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, issue Forthcomi.
- Daniel Levy & Tamir Mayer & Alon Raviv, 2022. "Economists in the 2008 Financial Crisis: Slow to See, Fast to Act," Working Paper series 22-04, Rimini Centre for Economic Analysis.
- Levy, Daniel & Mayer, Tamir & Raviv, Alon, 2022. "Economists in the 2008 Financial Crisis: Slow to See, Fast to Act," MPRA Paper 112008, University Library of Munich, Germany.
- Daniel Levy & Tamir Mayer & Alon Raviv, 2022. "Economists in the 2008 Financial Crisis: Slow to See, Fast to Act," Working Papers 2022-01, Bar-Ilan University, Department of Economics.
- Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
- Martin, Simon & Rasch, Alexander, 2022. "Collusion by algorithm: The role of unobserved actions," DICE Discussion Papers 382, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
- Mehmet Güney Celbiş & Pui-Hang Wong & Karima Kourtit & Peter Nijkamp, 2021. "Innovativeness, Work Flexibility, and Place Characteristics: A Spatial Econometric and Machine Learning Approach," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
- Amitabh Chandra & Courtney Coile & Corina Mommaerts, 2023.
"What Can Economics Say about Alzheimer's Disease?,"
Journal of Economic Literature, American Economic Association, vol. 61(2), pages 428-470, June.
- Amitabh Chandra & Courtney Coile & Corina Mommaerts, 2020. "What Can Economics Say About Alzheimer's Disease?," NBER Working Papers 27760, National Bureau of Economic Research, Inc.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2022-09-05 (Big Data)
- NEP-ECM-2022-09-05 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2207.12255. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.