IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v109y2022i4p1101-1116..html
   My bibliography  Save this article

Sensitivity analysis for unmeasured confounding in the estimation of marginal causal effects
[Doubly robust estimation in missing data and causal inference models]

Author

Listed:
  • I Ciocănea-Teodorescu
  • E E Gabriel
  • A Sjölander

Abstract

SummaryOne of the main threats to the validity of causal effect estimates from observational data is the existence of unmeasured confounders. A plethora of methods has been proposed to quantify deviation from conditional exchangeability, which arises when confounding is not properly accounted for, with each method having its own set of limitations and underlying assumptions. Few methods both scale well with the increasing complexity of potential measured confounders and avoid making strong simplifying assumptions about the effect of the unmeasured confounder within strata of the measured confounders. For binary outcomes, we propose a quantification of the deviation from conditional exchangeability, based on standardization within levels of the exposure, which can accommodate any type of measured and unmeasured confounders or desired estimand. In the case of binary exposure, this amounts to varying two parameters across a grid of values, no matter how complex the measured confounding. We propose three methods of estimation for the causal estimand of interest under our proposed sensitivity analysis. This allows for an easily applied, easily interpreted sensitivity analysis that makes minimal assumptions about the type of unmeasured confounding and places no limits on the complexity of the potential measured confounders.

Suggested Citation

  • I Ciocănea-Teodorescu & E E Gabriel & A Sjölander, 2022. "Sensitivity analysis for unmeasured confounding in the estimation of marginal causal effects [Doubly robust estimation in missing data and causal inference models]," Biometrika, Biometrika Trust, vol. 109(4), pages 1101-1116.
  • Handle: RePEc:oup:biomet:v:109:y:2022:i:4:p:1101-1116.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asac018
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guildo W. Imbens, 2003. "Sensitivity to Exogeneity Assumptions in Program Evaluation," American Economic Review, American Economic Association, vol. 93(2), pages 126-132, May.
    2. AlexanderM. Franks & Alexander D’Amour & Avi Feller, 2020. "Flexible Sensitivity Analysis for Observational Studies Without Observable Implications," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1730-1746, December.
    3. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    4. Manski, Charles F, 1990. "Nonparametric Bounds on Treatment Effects," American Economic Review, American Economic Association, vol. 80(2), pages 319-323, May.
    5. Stefanski L. A. & Boos D. D., 2002. "The Calculus of M-Estimation," The American Statistician, American Statistical Association, vol. 56, pages 29-38, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    2. Bo Zhang & Eric J. Tchetgen Tchetgen, 2022. "A semi‐parametric approach to model‐based sensitivity analysis in observational studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 668-691, December.
    3. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
    4. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    5. Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
    6. Firpo, Sergio Pinheiro & Pinto, Rafael de Carvalho Cayres, 2012. "Combining Strategies for the Estimation of Treatment Effects," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 32(1), March.
    7. Andrea Ichino & Fabrizia Mealli & Tommaso Nannicini, 2008. "From temporary help jobs to permanent employment: what can we learn from matching estimators and their sensitivity?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(3), pages 305-327.
    8. Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2021. "Long Story Short: Omitted Variable Bias in Causal Machine Learning," Papers 2112.13398, arXiv.org, revised May 2024.
    9. Matthew A. Masten & Alexandre Poirier & Linqi Zhang, 2024. "Assessing Sensitivity to Unconfoundedness: Estimation and Inference," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(1), pages 1-13, January.
    10. Bruno Arpino & Arnstein Aassve, 2013. "Estimating the causal effect of fertility on economic wellbeing: data requirements, identifying assumptions and estimation methods," Empirical Economics, Springer, vol. 44(1), pages 355-385, February.
    11. repec:zbw:rwirep:0426 is not listed on IDEAS
    12. Hendrik Schmitz & Matthias Westphal, 2013. "Short- and Medium-term Effects of Informal Care Provision on Health," Ruhr Economic Papers 0426, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    13. Haensch, Anna-Carolina & Drechsler, Jörg & Bernhard, Sarah, 2020. "TippingSens: An R Shiny Application to Facilitate Sensitivity Analysis for Causal Inference Under Confounding," IAB-Discussion Paper 202029, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    14. Schmitz, H. & Westphal, M., 2013. "Short- and medium-term effects of informal care provision on health," Health, Econometrics and Data Group (HEDG) Working Papers 13/23, HEDG, c/o Department of Economics, University of York.
    15. Claudia Noack, 2021. "Sensitivity of LATE Estimates to Violations of the Monotonicity Assumption," Papers 2106.06421, arXiv.org.
    16. Sourabh Balgi & Jose M. Pe~na & Adel Daoud, 2022. "$\rho$-GNF: A Copula-based Sensitivity Analysis to Unobserved Confounding Using Normalizing Flows," Papers 2209.07111, arXiv.org, revised Aug 2024.
    17. Colin B. Fogarty, 2023. "Testing weak nulls in matched observational studies," Biometrics, The International Biometric Society, vol. 79(3), pages 2196-2207, September.
    18. Schmitz, Hendrik & Westphal, Matthias, 2015. "Short- and medium-term effects of informal care provision on female caregivers’ health," Journal of Health Economics, Elsevier, vol. 42(C), pages 174-185.
    19. Matthew A. Masten & Alexandre Poirier, 2021. "Salvaging Falsified Instrumental Variable Models," Econometrica, Econometric Society, vol. 89(3), pages 1449-1469, May.
    20. Matthew A Masten & Alexandre Poirier, 2023. "Choosing exogeneity assumptions in potential outcome models," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 327-349.
    21. Ruoyao Shi, 2021. "An Averaging Estimator for Two Step M Estimation in Semiparametric Models," Working Papers 202105, University of California at Riverside, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:109:y:2022:i:4:p:1101-1116.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.