IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v185y2022is2ps668-s691.html
   My bibliography  Save this article

A semi‐parametric approach to model‐based sensitivity analysis in observational studies

Author

Listed:
  • Bo Zhang
  • Eric J. Tchetgen Tchetgen

Abstract

When drawing causal inference from observational data, there is almost always concern about unmeasured confounding. One way to tackle this is to conduct a sensitivity analysis. One widely used sensitivity analysis framework hypothesises the existence of a scalar unmeasured confounder U and asks how the causal conclusion would change were U measured and included in the primary analysis. Work along this line often makes various parametric assumptions on U, for the sake of mathematical and computational convenience. In this article, we further this line of research by developing a valid sensitivity analysis that leaves the distribution of U unrestricted. Compared to many existing methods in the literature, our method allows for a larger and more flexible family of models, mitigates observable implications, and works seamlessly with any primary analysis that models the outcome regression parametrically. We construct both pointwise confidence intervals and confidence bands that are uniformly valid over a given sensitivity parameter space, thus formally accounting for unknown sensitivity parameters. We apply our proposed method on an influential yet controversial study of the causal relationship between war experiences and political activeness using observational data from Uganda.

Suggested Citation

  • Bo Zhang & Eric J. Tchetgen Tchetgen, 2022. "A semi‐parametric approach to model‐based sensitivity analysis in observational studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 668-691, December.
  • Handle: RePEc:bla:jorssa:v:185:y:2022:i:s2:p:s668-s691
    DOI: 10.1111/rssa.12946
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12946
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12946?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joseph G. Altonji & Todd E. Elder & Christopher R. Taber, 2005. "Selection on Observed and Unobserved Variables: Assessing the Effectiveness of Catholic Schools," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 151-184, February.
    2. Andrea Ichino & Fabrizia Mealli & Tommaso Nannicini, 2008. "From temporary help jobs to permanent employment: what can we learn from matching estimators and their sensitivity?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(3), pages 305-327.
    3. Jesse Y. Hsu & Dylan S. Small, 2013. "Calibrating Sensitivity Analyses to Observed Covariates in Observational Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 803-811, December.
    4. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    5. Guildo W. Imbens, 2003. "Sensitivity to Exogeneity Assumptions in Program Evaluation," American Economic Review, American Economic Association, vol. 93(2), pages 126-132, May.
    6. Shiqiang Du & Peijun Shi & Anton Van Rompaey, 2013. "The Relationship between Urban Sprawl and Farmland Displacement in the Pearl River Delta, China," Land, MDPI, vol. 3(1), pages 1-18, December.
    7. AlexanderM. Franks & Alexander D’Amour & Avi Feller, 2020. "Flexible Sensitivity Analysis for Observational Studies Without Observable Implications," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1730-1746, December.
    8. Andrew S. Allen & Glen A. Satten & Anastasios A. Tsiatis, 2005. "Locally-efficient robust estimation of haplotype-disease association in family-based studies," Biometrika, Biometrika Trust, vol. 92(3), pages 559-571, September.
    9. Bo Zhang & Dylan S. Small, 2020. "A calibrated sensitivity analysis for matched observational studies with application to the effect of second‐hand smoke exposure on blood lead levels in children," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1285-1305, November.
    10. Paul R. Rosenbaum & Dylan S. Small, 2017. "An adaptive Mantel–Haenszel test for sensitivity analysis in observational studies," Biometrics, The International Biometric Society, vol. 73(2), pages 422-430, June.
    11. Carlos Cinelli & Chad Hazlett, 2020. "Making sense of sensitivity: extending omitted variable bias," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(1), pages 39-67, February.
    12. Blattman, Christopher, 2009. "From Violence to Voting: War and Political Participation in Uganda," American Political Science Review, Cambridge University Press, vol. 103(2), pages 231-247, May.
    13. Qingyuan Zhao & Dylan S. Small & Bhaswar B. Bhattacharya, 2019. "Sensitivity analysis for inverse probability weighting estimators via the percentile bootstrap," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(4), pages 735-761, September.
    14. Rosenbaum, Paul R. & Silber, Jeffrey H., 2009. "Amplification of Sensitivity Analysis in Matched Observational Studies," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1398-1405.
    15. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
    16. DiPrete, Thomas A. & Gangl, Markus, 2004. "Assessing bias in the estimation of causal effects: Rosenbaum bounds on matching estimators and instrumental variables estimation with imperfect instruments," Discussion Papers, Research Unit: Labor Market Policy and Employment SP I 2004-101, WZB Berlin Social Science Center.
    17. Rosenbaum, Paul R., 2010. "Design Sensitivity and Efficiency in Observational Studies," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 692-702.
    18. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    19. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    20. Christopher Blattman & Jeannie Annan, 2010. "The Consequences of Child Soldiering," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 882-898, November.
    21. Ho, Daniel E. & Imai, Kosuke & King, Gary & Stuart, Elizabeth A., 2007. "Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," Political Analysis, Cambridge University Press, vol. 15(3), pages 199-236, July.
    22. Tanya P. Garcia & Yanyuan Ma, 2016. "Optimal Estimator for Logistic Model with Distribution-free Random Intercept," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 156-171, March.
    23. Anastasios A. Tsiatis & Yanyuan Ma, 2004. "Locally efficient semiparametric estimators for functional measurement error models," Biometrika, Biometrika Trust, vol. 91(4), pages 835-848, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Zhang & Dylan S. Small, 2020. "A calibrated sensitivity analysis for matched observational studies with application to the effect of second‐hand smoke exposure on blood lead levels in children," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1285-1305, November.
    2. Huang, Wei & Li, Fan & Liao, Xiaowei & Hu, Pingping, 2018. "More money, better performance? The effects of student loans and need-based grants in China's higher education," China Economic Review, Elsevier, vol. 51(C), pages 208-227.
    3. Tommaso Nannicini, 2007. "Simulation-based sensitivity analysis for matching estimators," Stata Journal, StataCorp LP, vol. 7(3), pages 334-350, September.
    4. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    5. Andrea Ichino & Fabrizia Mealli & Tommaso Nannicini, 2008. "From temporary help jobs to permanent employment: what can we learn from matching estimators and their sensitivity?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(3), pages 305-327.
    6. Matthew A. Masten & Alexandre Poirier & Linqi Zhang, 2024. "Assessing Sensitivity to Unconfoundedness: Estimation and Inference," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(1), pages 1-13, January.
    7. Chang, Pao-Li & Lee, Myoung-Jae, 2011. "The WTO trade effect," Journal of International Economics, Elsevier, vol. 85(1), pages 53-71, September.
    8. Paul R. Rosenbaum, 2015. "Bahadur Efficiency of Sensitivity Analyses in Observational Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 205-217, March.
    9. Yasusada Murata & Ryo Nakajima & Ryosuke Okamoto & Ryuichi Tamura, 2013. "Localized knowledge spillovers and patent citations: A distance-based approach (revised version)," GRIPS Discussion Papers 12-18, National Graduate Institute for Policy Studies.
    10. Xavier de Luna & Mathias Lundin, 2014. "Sensitivity analysis of the unconfoundedness assumption with an application to an evaluation of college choice effects on earnings," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1767-1784, August.
    11. Schmitz, Hendrik & Westphal, Matthias, 2015. "Short- and medium-term effects of informal care provision on female caregivers’ health," Journal of Health Economics, Elsevier, vol. 42(C), pages 174-185.
    12. Michael J. Peel, 2014. "Addressing unobserved endogeneity bias in accounting studies: control and sensitivity methods by variable type," Accounting and Business Research, Taylor & Francis Journals, vol. 44(5), pages 545-571, October.
    13. Zhexiao Lin & Peng Ding & Fang Han, 2021. "Estimation based on nearest neighbor matching: from density ratio to average treatment effect," Papers 2112.13506, arXiv.org.
    14. Sascha O. Becker & Marco Caliendo, 2007. "Sensitivity analysis for average treatment effects," Stata Journal, StataCorp LP, vol. 7(1), pages 71-83, February.
    15. Colnet Bénédicte & Josse Julie & Varoquaux Gaël & Scornet Erwan, 2022. "Causal effect on a target population: A sensitivity analysis to handle missing covariates," Journal of Causal Inference, De Gruyter, vol. 10(1), pages 372-414, January.
    16. Dragana Radicic & Geoffrey Pugh & David Douglas, 2020. "Promoting cooperation in innovation ecosystems: evidence from European traditional manufacturing SMEs," Small Business Economics, Springer, vol. 54(1), pages 257-283, January.
    17. Stéphane Bonhomme & Martin Weidner, 2020. "Minimizing Sensitivity to Model Misspecification," CeMMAP working papers CWP37/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Li Liang & Greene Tom, 2013. "A Weighting Analogue to Pair Matching in Propensity Score Analysis," The International Journal of Biostatistics, De Gruyter, vol. 9(2), pages 215-234, July.
    19. Stéphane Bonhomme & Martin Weidner, 2022. "Minimizing sensitivity to model misspecification," Quantitative Economics, Econometric Society, vol. 13(3), pages 907-954, July.
    20. Myoung Lee & Sang Lee, 2009. "Sensitivity analysis of job-training effects on reemployment for Korean women," Empirical Economics, Springer, vol. 36(1), pages 81-107, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:185:y:2022:i:s2:p:s668-s691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.