IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i3p2196-2207.html
   My bibliography  Save this article

Testing weak nulls in matched observational studies

Author

Listed:
  • Colin B. Fogarty

Abstract

We develop sensitivity analyses for the sample average treatment effect in matched observational studies while allowing unit‐level treatment effects to vary. The methods may be applied to studies using any optimal without‐replacement matching algorithm. In contrast to randomized experiments and to paired observational studies, we show for general matched designs that over a large class of test statistics, any procedure bounding the worst‐case expectation while allowing for arbitrary effect heterogeneity must be unnecessarily conservative if treatment effects are actually constant across individuals. We present a sensitivity analysis which bounds the worst‐case expectation while allowing for effect heterogeneity, and illustrate why it is generally conservative if effects are constant. An alternative procedure is presented that is asymptotically sharp if treatment effects are constant, and that is valid for testing the sample average effect under additional restrictions which may be deemed benign by practitioners. Simulations demonstrate that this alternative procedure results in a valid sensitivity analysis for the weak null hypothesis under a host of reasonable data‐generating processes. The procedures allow practitioners to assess robustness of estimated sample average treatment effects to hidden bias while allowing for effect heterogeneity in matched observational studies.

Suggested Citation

  • Colin B. Fogarty, 2023. "Testing weak nulls in matched observational studies," Biometrics, The International Biometric Society, vol. 79(3), pages 2196-2207, September.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2196-2207
    DOI: 10.1111/biom.13741
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13741
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13741?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhiqiang Tan, 2010. "Bounded, efficient and doubly robust estimation with inverse weighting," Biometrika, Biometrika Trust, vol. 97(3), pages 661-682.
    2. Paul R. Rosenbaum, 2013. "Impact of Multiple Matched Controls on Design Sensitivity in Observational Studies," Biometrics, The International Biometric Society, vol. 69(1), pages 118-127, March.
    3. Guildo W. Imbens, 2003. "Sensitivity to Exogeneity Assumptions in Program Evaluation," American Economic Review, American Economic Association, vol. 93(2), pages 126-132, May.
    4. AlexanderM. Franks & Alexander D’Amour & Avi Feller, 2020. "Flexible Sensitivity Analysis for Observational Studies Without Observable Implications," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1730-1746, December.
    5. Peter L. Cohen & Colin B. Fogarty, 2022. "Gaussian prepivoting for finite population causal inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 295-320, April.
    6. Qingyuan Zhao & Dylan S. Small & Bhaswar B. Bhattacharya, 2019. "Sensitivity analysis for inverse probability weighting estimators via the percentile bootstrap," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(4), pages 735-761, September.
    7. Brian L. Egleston & Daniel O. Scharfstein & Ellen MacKenzie, 2009. "On Estimation of the Survivor Average Causal Effect in Observational Studies When Important Confounders Are Missing Due to Death," Biometrics, The International Biometric Society, vol. 65(2), pages 497-504, June.
    8. Joseph L. Gastwirth & Abba M. Krieger & Paul R. Rosenbaum, 2000. "Asymptotic separability in sensitivity analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 545-555.
    9. Ben B. Hansen, 2004. "Full Matching in an Observational Study of Coaching for the SAT," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 609-618, January.
    10. Nicole E. Pashley & Luke W. Miratrix, 2021. "Insights on Variance Estimation for Blocked and Matched Pairs Designs," Journal of Educational and Behavioral Statistics, , vol. 46(3), pages 271-296, June.
    11. Colin B. Fogarty, 2018. "On mitigating the analytical limitations of finely stratified experiments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(5), pages 1035-1056, November.
    12. Colin B. Fogarty, 2020. "Studentized Sensitivity Analysis for the Sample Average Treatment Effect in Paired Observational Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1518-1530, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siyu Heng & Hyunseung Kang & Dylan S. Small & Colin B. Fogarty, 2021. "Increasing power for observational studies of aberrant response: An adaptive approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 482-504, July.
    2. Bo Zhang & Dylan S. Small, 2020. "A calibrated sensitivity analysis for matched observational studies with application to the effect of second‐hand smoke exposure on blood lead levels in children," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1285-1305, November.
    3. Bo Zhang & Eric J. Tchetgen Tchetgen, 2022. "A semi‐parametric approach to model‐based sensitivity analysis in observational studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 668-691, December.
    4. Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2021. "Long Story Short: Omitted Variable Bias in Causal Machine Learning," Papers 2112.13398, arXiv.org, revised May 2024.
    5. Jesse Y. Hsu & Dylan S. Small, 2013. "Calibrating Sensitivity Analyses to Observed Covariates in Observational Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 803-811, December.
    6. I Ciocănea-Teodorescu & E E Gabriel & A Sjölander, 2022. "Sensitivity analysis for unmeasured confounding in the estimation of marginal causal effects [Doubly robust estimation in missing data and causal inference models]," Biometrika, Biometrika Trust, vol. 109(4), pages 1101-1116.
    7. Paul R. Rosenbaum, 2007. "Sensitivity Analysis for m-Estimates, Tests, and Confidence Intervals in Matched Observational Studies," Biometrics, The International Biometric Society, vol. 63(2), pages 456-464, June.
    8. Colin B. Fogarty & Pixu Shi & Mark E. Mikkelsen & Dylan S. Small, 2017. "Randomization Inference and Sensitivity Analysis for Composite Null Hypotheses With Binary Outcomes in Matched Observational Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 321-331, January.
    9. Nicole E. Pashley & Luke W. Miratrix, 2021. "Insights on Variance Estimation for Blocked and Matched Pairs Designs," Journal of Educational and Behavioral Statistics, , vol. 46(3), pages 271-296, June.
    10. Paul R. Rosenbaum, 2007. "Confidence Intervals for Uncommon but Dramatic Responses to Treatment," Biometrics, The International Biometric Society, vol. 63(4), pages 1164-1171, December.
    11. Giovanni Nattino & Bo Lu, 2018. "Model assisted sensitivity analyses for hidden bias with binary outcomes," Biometrics, The International Biometric Society, vol. 74(4), pages 1141-1149, December.
    12. Paul R. Rosenbaum, 2013. "Impact of Multiple Matched Controls on Design Sensitivity in Observational Studies," Biometrics, The International Biometric Society, vol. 69(1), pages 118-127, March.
    13. Xinkun Nie & Guido Imbens & Stefan Wager, 2021. "Covariate Balancing Sensitivity Analysis for Extrapolating Randomized Trials across Locations," Papers 2112.04723, arXiv.org.
    14. Paolo Naticchioni & Silvia Loriga, 2011. "Short and Long Term Evaluations of Public Employment Services in Italy," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 57(3), pages 201-229.
    15. Leonardo Becchetti & Pierluigi Conzo & Alessandro Romeo, 2014. "Violence, trust, and trustworthiness: evidence from a Nairobi slum," Oxford Economic Papers, Oxford University Press, vol. 66(1), pages 283-305, January.
    16. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    17. Doko Tchatoka, Firmin Sabro, 2012. "Specification Tests with Weak and Invalid Instruments," MPRA Paper 40185, University Library of Munich, Germany.
    18. Becchetti, Leonardo & Ciciretti, Rocco & Hasan, Iftekhar, 2015. "Corporate social responsibility, stakeholder risk, and idiosyncratic volatility," Journal of Corporate Finance, Elsevier, vol. 35(C), pages 297-309.
    19. Yi He & Linzhi Zheng & Peng Luo, 2023. "Treatment Benefit and Treatment Harm Rates with Nonignorable Missing Covariate, Endpoint, or Treatment," Mathematics, MDPI, vol. 11(21), pages 1-18, October.
    20. Martín-García, Jaime & Gómez-Limón, José A. & Arriaza, Manuel, 2024. "Conversion to organic farming: Does it change the economic and environmental performance of fruit farms?," Ecological Economics, Elsevier, vol. 220(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2196-2207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.