Flexible Sensitivity Analysis for Observational Studies Without Observable Implications
Author
Abstract
Suggested Citation
DOI: 10.1080/01621459.2019.1604369
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Colin B. Fogarty, 2023. "Testing weak nulls in matched observational studies," Biometrics, The International Biometric Society, vol. 79(3), pages 2196-2207, September.
- Christian Gische & Manuel C. Voelkle, 2022. "Beyond the Mean: A Flexible Framework for Studying Causal Effects Using Linear Models," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 868-901, September.
- Yilin Li & Wang Miao & Ilya Shpitser & Eric J. Tchetgen Tchetgen, 2023. "A self‐censoring model for multivariate nonignorable nonmonotone missing data," Biometrics, The International Biometric Society, vol. 79(4), pages 3203-3214, December.
- Bo Zhang & Eric J. Tchetgen Tchetgen, 2022. "A semi‐parametric approach to model‐based sensitivity analysis in observational studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 668-691, December.
- Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2021.
"Long Story Short: Omitted Variable Bias in Causal Machine Learning,"
Papers
2112.13398, arXiv.org, revised May 2024.
- Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2022. "Long Story Short: Omitted Variable Bias in Causal Machine Learning," NBER Working Papers 30302, National Bureau of Economic Research, Inc.
- I Ciocănea-Teodorescu & E E Gabriel & A Sjölander, 2022. "Sensitivity analysis for unmeasured confounding in the estimation of marginal causal effects [Doubly robust estimation in missing data and causal inference models]," Biometrika, Biometrika Trust, vol. 109(4), pages 1101-1116.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1730-1746. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.