IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i532p1730-1746.html
   My bibliography  Save this article

Flexible Sensitivity Analysis for Observational Studies Without Observable Implications

Author

Listed:
  • AlexanderM. Franks
  • Alexander D’Amour
  • Avi Feller

Abstract

A fundamental challenge in observational causal inference is that assumptions about unconfoundedness are not testable from data. Assessing sensitivity to such assumptions is therefore important in practice. Unfortunately, some existing sensitivity analysis approaches inadvertently impose restrictions that are at odds with modern causal inference methods, which emphasize flexible models for observed data. To address this issue, we propose a framework that allows (1) flexible models for the observed data and (2) clean separation of the identified and unidentified parts of the sensitivity model. Our framework extends an approach from the missing data literature, known as Tukey’s factorization, to the causal inference setting. Under this factorization, we can represent the distributions of unobserved potential outcomes in terms of unidentified selection functions that posit a relationship between treatment assignment and unobserved potential outcomes. The sensitivity parameters in this framework are easily interpreted, and we provide heuristics for calibrating these parameters against observable quantities. We demonstrate the flexibility of this approach in two examples, where we estimate both average treatment effects and quantile treatment effects using Bayesian nonparametric models for the observed data.

Suggested Citation

  • AlexanderM. Franks & Alexander D’Amour & Avi Feller, 2020. "Flexible Sensitivity Analysis for Observational Studies Without Observable Implications," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1730-1746, December.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1730-1746
    DOI: 10.1080/01621459.2019.1604369
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1604369
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1604369?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colin B. Fogarty, 2023. "Testing weak nulls in matched observational studies," Biometrics, The International Biometric Society, vol. 79(3), pages 2196-2207, September.
    2. Christian Gische & Manuel C. Voelkle, 2022. "Beyond the Mean: A Flexible Framework for Studying Causal Effects Using Linear Models," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 868-901, September.
    3. Yilin Li & Wang Miao & Ilya Shpitser & Eric J. Tchetgen Tchetgen, 2023. "A self‐censoring model for multivariate nonignorable nonmonotone missing data," Biometrics, The International Biometric Society, vol. 79(4), pages 3203-3214, December.
    4. Bo Zhang & Eric J. Tchetgen Tchetgen, 2022. "A semi‐parametric approach to model‐based sensitivity analysis in observational studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 668-691, December.
    5. Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2021. "Long Story Short: Omitted Variable Bias in Causal Machine Learning," Papers 2112.13398, arXiv.org, revised May 2024.
    6. I Ciocănea-Teodorescu & E E Gabriel & A Sjölander, 2022. "Sensitivity analysis for unmeasured confounding in the estimation of marginal causal effects [Doubly robust estimation in missing data and causal inference models]," Biometrika, Biometrika Trust, vol. 109(4), pages 1101-1116.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1730-1746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.