IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-44235-6.html
   My bibliography  Save this article

The role of ion migration, octahedral tilt, and the A-site cation on the instability of Cs1-xFAxPbI3

Author

Listed:
  • Weilun Li

    (Monash University)

  • Mengmeng Hao

    (The University of Queensland)

  • Ardeshir Baktash

    (The University of Queensland)

  • Lianzhou Wang

    (The University of Queensland
    The University of Queensland)

  • Joanne Etheridge

    (Monash University
    Monash University
    Monash University)

Abstract

Organic-inorganic hybrid perovskites are promising materials for the next generation photovoltaics and optoelectronics; however, their practical application has been hindered by poor structural stability mainly caused by ion migration and external stimuli. Understanding the mechanism(s) of ion migration and structure decomposition is thus critical. Here we observe the sequence of structural changes at the atomic level that precede structural decomposition in the technologically important Cs1-xFAxPbI3 using ultralow dose transmission electron microscopy. We find that these changes differ, depending upon the A-site composition. Initially, there is a random loss of FA+, complemented by the loss of I-. The remaining FA+ and I- ions then migrate, unit cell by unit cell, into an ordered and more stable phase with a √2 x √2 superstructure. Further ion loss is accompanied by A-site dependent octahedral tilt modes and associated tetragonal phases with different stabilities. These observations of the loss of FA+/I- ion pairs, ion migration, octahedral tilt modes, and the role of the A-cation, provide insights into the atomic-scale structural mechanisms that drive and block ion loss and ion migration, opening pathways to inhibit ion loss, migration and improve structural stability.

Suggested Citation

  • Weilun Li & Mengmeng Hao & Ardeshir Baktash & Lianzhou Wang & Joanne Etheridge, 2023. "The role of ion migration, octahedral tilt, and the A-site cation on the instability of Cs1-xFAxPbI3," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44235-6
    DOI: 10.1038/s41467-023-44235-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44235-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44235-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Julian Burschka & Norman Pellet & Soo-Jin Moon & Robin Humphry-Baker & Peng Gao & Mohammad K. Nazeeruddin & Michael Grätzel, 2013. "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, Nature, vol. 499(7458), pages 316-319, July.
    2. Shulin Chen & Changwei Wu & Bo Han & Zhetong Liu & Zhou Mi & Weizhong Hao & Jinjin Zhao & Xiao Wang & Qing Zhang & Kaihui Liu & Junlei Qi & Jian Cao & Jicai Feng & Dapeng Yu & Jiangyu Li & Peng Gao, 2021. "Atomic-scale imaging of CH3NH3PbI3 structure and its decomposition pathway," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    3. Yasser Hassan & Jong Hyun Park & Michael L. Crawford & Aditya Sadhanala & Jeongjae Lee & James C. Sadighian & Edoardo Mosconi & Ravichandran Shivanna & Eros Radicchi & Mingyu Jeong & Changduk Yang & H, 2021. "Ligand-engineered bandgap stability in mixed-halide perovskite LEDs," Nature, Nature, vol. 591(7848), pages 72-77, March.
    4. Marina R. Filip & Giles E. Eperon & Henry J. Snaith & Feliciano Giustino, 2014. "Steric engineering of metal-halide perovskites with tunable optical band gaps," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    5. Yu Cao & Nana Wang & He Tian & Jingshu Guo & Yingqiang Wei & Hong Chen & Yanfeng Miao & Wei Zou & Kang Pan & Yarong He & Hui Cao & You Ke & Mengmeng Xu & Ying Wang & Ming Yang & Kai Du & Zewu Fu & Dec, 2018. "Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures," Nature, Nature, vol. 562(7726), pages 249-253, October.
    6. Mengmeng Hao & Yang Bai & Stefan Zeiske & Long Ren & Junxian Liu & Yongbo Yuan & Nasim Zarrabi & Ningyan Cheng & Mehri Ghasemi & Peng Chen & Miaoqiang Lyu & Dongxu He & Jung-Ho Yun & Yi Du & Yun Wang , 2020. "Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation," Nature Energy, Nature, vol. 5(1), pages 79-88, January.
    7. Shulin Chen & Xiaowei Zhang & Jinjin Zhao & Ying Zhang & Guoli Kong & Qian Li & Ning Li & Yue Yu & Ningan Xu & Jingmin Zhang & Kaihui Liu & Qing Zhao & Jian Cao & Jicai Feng & Xinzheng Li & Junlei Qi , 2018. "Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    8. Kebin Lin & Jun Xing & Li Na Quan & F. Pelayo García Arquer & Xiwen Gong & Jianxun Lu & Liqiang Xie & Weijie Zhao & Di Zhang & Chuanzhong Yan & Wenqiang Li & Xinyi Liu & Yan Lu & Jeffrey Kirman & Edwa, 2018. "Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent," Nature, Nature, vol. 562(7726), pages 245-248, October.
    9. Alessandra Alberti & Corrado Bongiorno & Emanuele Smecca & Ioannis Deretzis & Antonino La Magna & Corrado Spinella, 2019. "Pb clustering and PbI2 nanofragmentation during methylammonium lead iodide perovskite degradation," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    10. Jaewang Park & Jongbeom Kim & Hyun-Sung Yun & Min Jae Paik & Eunseo Noh & Hyun Jung Mun & Min Gyu Kim & Tae Joo Shin & Sang Il Seok, 2023. "Controlled growth of perovskite layers with volatile alkylammonium chlorides," Nature, Nature, vol. 616(7958), pages 724-730, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sudhir Kumar & Tommaso Marcato & Frank Krumeich & Yen-Ting Li & Yu-Cheng Chiu & Chih-Jen Shih, 2022. "Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Yongjie Liu & Chen Tao & Yu Cao & Liangyan Chen & Shuxin Wang & Pei Li & Cheng Wang & Chenwei Liu & Feihong Ye & Shengyong Hu & Meng Xiao & Zheng Gao & Pengbing Gui & Fang Yao & Kailian Dong & Jiashua, 2022. "Synergistic passivation and stepped-dimensional perovskite analogs enable high-efficiency near-infrared light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Yang Bryan Cao & Daquan Zhang & Qianpeng Zhang & Xiao Qiu & Yu Zhou & Swapnadeep Poddar & Yu Fu & Yudong Zhu & Jin-Feng Liao & Lei Shu & Beitao Ren & Yucheng Ding & Bing Han & Zhubing He & Dai-Bin Kua, 2023. "High-efficiency, flexible and large-area red/green/blue all-inorganic metal halide perovskite quantum wires-based light-emitting diodes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Kyeong-Yoon Baek & Woocheol Lee & Jonghoon Lee & Jaeyoung Kim & Heebeom Ahn & Jae Il Kim & Junwoo Kim & Hyungbin Lim & Jiwon Shin & Yoon-Joo Ko & Hyeon-Dong Lee & Richard H. Friend & Tae-Woo Lee & Jeo, 2022. "Mechanochemistry-driven engineering of 0D/3D heterostructure for designing highly luminescent Cs–Pb–Br perovskites," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Shuxian Du & Hao Huang & Zhineng Lan & Peng Cui & Liang Li & Min Wang & Shujie Qu & Luyao Yan & Changxu Sun & Yingying Yang & Xinxin Wang & Meicheng Li, 2024. "Inhibiting perovskite decomposition by a creeper-inspired strategy enables efficient and stable perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Jin Zhou & Shiqiang Fu & Shun Zhou & Lishuai Huang & Cheng Wang & Hongling Guan & Dexin Pu & Hongsen Cui & Chen Wang & Ti Wang & Weiwei Meng & Guojia Fang & Weijun Ke, 2024. "Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Tomasz Popławski & Marek Kurkowski, 2023. "Nonlinear Loads in Lighting Installations—Problems and Threats," Energies, MDPI, vol. 16(16), pages 1-15, August.
    8. Kang Wang & Zih-Yu Lin & Zihan Zhang & Linrui Jin & Ke Ma & Aidan H. Coffey & Harindi R. Atapattu & Yao Gao & Jee Yung Park & Zitang Wei & Blake P. Finkenauer & Chenhui Zhu & Xiangeng Meng & Sarah N. , 2023. "Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Guangyi Shi & Zongming Huang & Ran Qiao & Wenjing Chen & Zhijian Li & Yaping Li & Kai Mu & Ting Si & Zhengguo Xiao, 2024. "Manipulating solvent fluidic dynamics for large-area perovskite film-formation and white light-emitting diodes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Yaxiao Lian & Dongchen Lan & Shiyu Xing & Bingbing Guo & Zhixiang Ren & Runchen Lai & Chen Zou & Baodan Zhao & Richard H. Friend & Dawei Di, 2022. "Ultralow-voltage operation of light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Boucar Diouf & Aarti Muley & Ramchandra Pode, 2023. "Issues, Challenges, and Future Perspectives of Perovskites for Energy Conversion Applications," Energies, MDPI, vol. 16(18), pages 1-29, September.
    12. Naveen Kumar Elumalai & Md Arafat Mahmud & Dian Wang & Ashraf Uddin, 2016. "Perovskite Solar Cells: Progress and Advancements," Energies, MDPI, vol. 9(11), pages 1-20, October.
    13. Xinchen Dai & Pramod Koshy & Charles Christopher Sorrell & Jongchul Lim & Jae Sung Yun, 2020. "Focussed Review of Utilization of Graphene-Based Materials in Electron Transport Layer in Halide Perovskite Solar Cells: Materials-Based Issues," Energies, MDPI, vol. 13(23), pages 1-24, December.
    14. Ming-Hsien Li & Jun-Ho Yum & Soo-Jin Moon & Peter Chen, 2016. "Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells," Energies, MDPI, vol. 9(5), pages 1-28, April.
    15. Shuo Wang & Qian Zhao & Abhijit Hazarika & Simiao Li & Yue Wu & Yaxin Zhai & Xihan Chen & Joseph M. Luther & Guoran Li, 2023. "Thermal tolerance of perovskite quantum dots dependent on A-site cation and surface ligand," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Gaffuri, Pierre & Stolyarova, Elena & Llerena, Daniel & Appert, Estelle & Consonni, Marianne & Robin, Stéphane & Consonni, Vincent, 2021. "Potential substitutes for critical materials in white LEDs: Technological challenges and market opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    18. Fangfang Wang & Mubai Li & Qiushuang Tian & Riming Sun & Hongzhuang Ma & Hongze Wang & Jingxi Chang & Zihao Li & Haoyu Chen & Jiupeng Cao & Aifei Wang & Jingjin Dong & You Liu & Jinzheng Zhao & Ying C, 2023. "Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Ubani, C.A. & Ibrahim, M.A. & Teridi, M.A.M., 2017. "Moving into the domain of perovskite sensitized solar cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 907-915.
    20. Mengmeng Ma & Xuliang Zhang & Xiao Chen & Hao Xiong & Liang Xu & Tao Cheng & Jianyu Yuan & Fei Wei & Boyuan Shen, 2023. "In situ imaging of the atomic phase transition dynamics in metal halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44235-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.