IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56182-5.html
   My bibliography  Save this article

Molecular ferroelectric self-assembled interlayer for efficient perovskite solar cells

Author

Listed:
  • Chang Xu

    (Zhejiang University)

  • Pengjie Hang

    (Zhejiang University)

  • Chenxia Kan

    (Zhejiang University)

  • Xiangwei Guo

    (Zhejiang University
    Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center)

  • Xianjiang Song

    (Nanchang University)

  • Chenran Xu

    (Zhejiang University)

  • Guofeng You

    (Zhejiang University)

  • Wei-Qiang Liao

    (Nanchang University)

  • Haiming Zhu

    (Zhejiang University)

  • Dawei Wang

    (Zhejiang University)

  • Qi Chen

    (Chinese Academy of Sciences)

  • Zijian Hong

    (Zhejiang University
    Zhejiang University)

  • Ren-Gen Xiong

    (Nanchang University)

  • Xuegong Yu

    (Zhejiang University
    Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center)

  • Lijian Zuo

    (Zhejiang University
    Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center)

  • Hongzheng Chen

    (Zhejiang University
    Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center)

Abstract

The interfacial molecular dipole enhances the photovoltaic performance of perovskite solar cells (PSCs) by facilitating improved charge extraction. However, conventional self-assembled monolayers (SAMs) face challenges like inadequate interface coverage and weak dipole interactions. Herein, we develop a strategy using a self-assembled ferroelectric layer to modify the interfacial properties of PSCs. Specifically, we employ 1-adamantanamine hydroiodide (ADAI) to establish robust chemical interactions and create a dipole layer over the perovskite. The oriented molecular packing and spontaneous polarity of ferroelectric ADAI generate a substantial interfacial dipole, adjusting band bending at the anode, reducing band misalignment, and suppressing charge recombination. Consequently, our formamidinium lead iodide-based conventional PSC achieves efficiencies of 25.13% (0.06 cm2) and 23.5% (1.00 cm2) while exhibiting enhanced stability. Notably, we demonstrate an impressive efficiency of 25.59% (certified at 25.36%) in a 0.06 cm2 area for the inverted champion device, showcasing the promise of ferroelectric SAMs for PSCs performance enhancement.

Suggested Citation

  • Chang Xu & Pengjie Hang & Chenxia Kan & Xiangwei Guo & Xianjiang Song & Chenran Xu & Guofeng You & Wei-Qiang Liao & Haiming Zhu & Dawei Wang & Qi Chen & Zijian Hong & Ren-Gen Xiong & Xuegong Yu & Liji, 2025. "Molecular ferroelectric self-assembled interlayer for efficient perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56182-5
    DOI: 10.1038/s41467-025-56182-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56182-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56182-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qi Jiang & Jinhui Tong & Yeming Xian & Ross A. Kerner & Sean P. Dunfield & Chuanxiao Xiao & Rebecca A. Scheidt & Darius Kuciauskas & Xiaoming Wang & Matthew P. Hautzinger & Robert Tirawat & Matthew C., 2022. "Surface reaction for efficient and stable inverted perovskite solar cells," Nature, Nature, vol. 611(7935), pages 278-283, November.
    2. Jaewang Park & Jongbeom Kim & Hyun-Sung Yun & Min Jae Paik & Eunseo Noh & Hyun Jung Mun & Min Gyu Kim & Tae Joo Shin & Sang Il Seok, 2023. "Controlled growth of perovskite layers with volatile alkylammonium chlorides," Nature, Nature, vol. 616(7958), pages 724-730, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin M. Gallant & Philippe Holzhey & Joel A. Smith & Saqlain Choudhary & Karim A. Elmestekawy & Pietro Caprioglio & Igal Levine & Alexandra A. Sheader & Esther Y-H. Hung & Fengning Yang & Daniel T, 2024. "A green solvent enables precursor phase engineering of stable formamidinium lead triiodide perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Shuchen Tan & Chongwen Li & Cheng Peng & Wenjian Yan & Hongkai Bu & Haokun Jiang & Fang Yue & Linbao Zhang & Hongtao Gao & Zhongmin Zhou, 2024. "Sustainable thermal regulation improves stability and efficiency in all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Mai Ali Alharbi & Shubhranshu Bhandari & Tapas Mallick, 2024. "Review of Progress on Printing Techniques Towards Commercialization of Perovskite Solar Cells," Energies, MDPI, vol. 18(1), pages 1-38, December.
    4. Weilun Li & Mengmeng Hao & Ardeshir Baktash & Lianzhou Wang & Joanne Etheridge, 2023. "The role of ion migration, octahedral tilt, and the A-site cation on the instability of Cs1-xFAxPbI3," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Zuolin Zhang & Yinsu Feng & Jike Ding & Quanxing Ma & Hong Zhang & Jiajia Zhang & Mengjia Li & Taoran Geng & Wenhuan Gao & Yang Wang & Boxue Zhang & Thierry Pauporté & Jian-Xin Tang & Hongjian Chen & , 2025. "Rationally designed universal passivator for high-performance single-junction and tandem perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    6. Meng-Hsueh Kuo & Neda Neykova & Ivo Stachiv, 2024. "Overview of the Recent Findings in the Perovskite-Type Structures Used for Solar Cells and Hydrogen Storage," Energies, MDPI, vol. 17(18), pages 1-23, September.
    7. Xue-Guang Chen & Linhan Lin & Guan-Yao Huang & Xiao-Mei Chen & Xiao-Ze Li & Yun-Ke Zhou & Yixuan Zou & Tairan Fu & Peng Li & Zhengcao Li & Hong-Bo Sun, 2024. "Optofluidic crystallithography for directed growth of single-crystalline halide perovskites," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Yuhang Liang & Feng Li & Xiangyuan Cui & Taoyuze Lv & Catherine Stampfl & Simon P. Ringer & Xudong Yang & Jun Huang & Rongkun Zheng, 2024. "Toward stabilization of formamidinium lead iodide perovskites by defect control and composition engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Tianpeng Li & Bin Li & Yingguo Yang & Zuoming Jin & Zhiguo Zhang & Peilin Wang & Liangliang Deng & Yiqiang Zhan & Qinghong Zhang & Jia Liang, 2024. "Metal chalcogenide electron extraction layers for nip-type tin-based perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Shuxian Du & Hao Huang & Zhineng Lan & Peng Cui & Liang Li & Min Wang & Shujie Qu & Luyao Yan & Changxu Sun & Yingying Yang & Xinxin Wang & Meicheng Li, 2024. "Inhibiting perovskite decomposition by a creeper-inspired strategy enables efficient and stable perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Jiangang Feng & Xi Wang & Jia Li & Haoming Liang & Wen Wen & Ezra Alvianto & Cheng-Wei Qiu & Rui Su & Yi Hou, 2023. "Resonant perovskite solar cells with extended band edge," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Jin Zhou & Shiqiang Fu & Shun Zhou & Lishuai Huang & Cheng Wang & Hongling Guan & Dexin Pu & Hongsen Cui & Chen Wang & Ti Wang & Weiwei Meng & Guojia Fang & Weijun Ke, 2024. "Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Yongjin Gan & Guixin Qiu & Chenqing Yan & Zhaoxiang Zeng & Binyi Qin & Xueguang Bi & Yucheng Liu, 2023. "Numerical Analysis on the Effect of the Conduction Band Offset in Dion–Jacobson Perovskite Solar Cells," Energies, MDPI, vol. 16(23), pages 1-13, December.
    14. Tian Chen & Jiangsheng Xie & Bin Wen & Qixin Yin & Ruohao Lin & Shengcai Zhu & Pingqi Gao, 2023. "Inhibition of defect-induced α-to-δ phase transition for efficient and stable formamidinium perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Li, Bowei & Jayawardena, K.D. G. Imalka & Zhang, Jing & Bandara, Rajapakshe Mudiyanselage Indrachapa & Liu, Xueping & Bi, Jingxin & Silva, Shashini M. & Liu, Dongtao & Underwood, Cameron C.L. & Xiang,, 2024. "Stability of formamidinium tin triiodide-based inverted perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    16. Kyung Mun Yeom & Changsoon Cho & Eui Hyuk Jung & Geunjin Kim & Chan Su Moon & So Yeon Park & Su Hyun Kim & Mun Young Woo & Mohammed Nabaz Taher Khayyat & Wanhee Lee & Nam Joong Jeon & Miguel Anaya & S, 2024. "Quantum barriers engineering toward radiative and stable perovskite photovoltaic devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Jiajia Suo & Bowen Yang & Edoardo Mosconi & Dmitry Bogachuk & Tiarnan A. S. Doherty & Kyle Frohna & Dominik J. Kubicki & Fan Fu & YeonJu Kim & Oussama Er-Raji & Tiankai Zhang & Lorenzo Baldinelli & Lu, 2024. "Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests," Nature Energy, Nature, vol. 9(2), pages 172-183, February.
    18. Cheng Gong & Haiyun Li & Zhiyuan Xu & Yuheng Li & Huaxin Wang & Qixin Zhuang & Awen Wang & Zhijun Li & Zhihao Guo & Cong Zhang & Baiqian Wang & Xiong Li & Zhigang Zang, 2024. "Efficient and stable inverted perovskite solar cells enabled by homogenized PCBM with enhanced electron transport," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Chun-Yang Chen & Fang-Hui Zhang & Jin Huang & Tao Xue & Xiao Wang & Chao-Fan Zheng & Hao Wang & Chun-Liang Jia, 2023. "Polymer Poly (Ethylene Oxide) Additive for High-Stability All-Inorganic CsPbI 3−x Br x Perovskite Solar Cells," Energies, MDPI, vol. 16(23), pages 1-12, November.
    20. Pengju Shi & Jiazhe Xu & Ilhan Yavuz & Tianyi Huang & Shaun Tan & Ke Zhao & Xu Zhang & Yuan Tian & Sisi Wang & Wei Fan & Yahui Li & Donger Jin & Xuemeng Yu & Chenyue Wang & Xingyu Gao & Zhong Chen & E, 2024. "Strain regulates the photovoltaic performance of thick-film perovskites," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56182-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.