IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47019-8.html
   My bibliography  Save this article

Strain regulates the photovoltaic performance of thick-film perovskites

Author

Listed:
  • Pengju Shi

    (Zhejiang University
    Westlake Institute for Advanced Study)

  • Jiazhe Xu

    (Zhejiang University
    Westlake Institute for Advanced Study)

  • Ilhan Yavuz

    (Marmara University)

  • Tianyi Huang

    (University of California)

  • Shaun Tan

    (University of California)

  • Ke Zhao

    (Zhejiang University
    Westlake Institute for Advanced Study)

  • Xu Zhang

    (Zhejiang University
    Westlake Institute for Advanced Study)

  • Yuan Tian

    (Zhejiang University
    Westlake Institute for Advanced Study)

  • Sisi Wang

    (Westlake Institute for Advanced Study)

  • Wei Fan

    (Zhejiang University
    Westlake Institute for Advanced Study)

  • Yahui Li

    (Zhejiang University
    Westlake Institute for Advanced Study)

  • Donger Jin

    (Zhejiang University)

  • Xuemeng Yu

    (Southern University of Science and Technology)

  • Chenyue Wang

    (Chinese Academy of Sciences)

  • Xingyu Gao

    (Chinese Academy of Sciences)

  • Zhong Chen

    (Westlake University)

  • Enzheng Shi

    (Zhejiang University)

  • Xihan Chen

    (Southern University of Science and Technology)

  • Deren Yang

    (Zhejiang University)

  • Jingjing Xue

    (Zhejiang University
    Shangyu Institute of Semiconductor Materials)

  • Yang Yang

    (University of California)

  • Rui Wang

    (Westlake Institute for Advanced Study
    Zhejiang Baima Lake Laboratory Co., Ltd)

Abstract

Perovskite photovoltaics, typically based on a solution-processed perovskite layer with a film thickness of a few hundred nanometres, have emerged as a leading thin-film photovoltaic technology. Nevertheless, many critical issues pose challenges to its commercialization progress, including industrial compatibility, stability, scalability and reliability. A thicker perovskite film on a scale of micrometres could mitigate these issues. However, the efficiencies of thick-film perovskite cells lag behind those with nanometre film thickness. With the mechanism remaining elusive, the community has long been under the impression that the limiting factor lies in the short carrier lifetime as a result of defects. Here, by constructing a perovskite system with extraordinarily long carrier lifetime, we rule out the restrictions of carrier lifetime on the device performance. Through this, we unveil the critical role of the ignored lattice strain in thick films. Our results provide insights into the factors limiting the performance of thick-film perovskite devices.

Suggested Citation

  • Pengju Shi & Jiazhe Xu & Ilhan Yavuz & Tianyi Huang & Shaun Tan & Ke Zhao & Xu Zhang & Yuan Tian & Sisi Wang & Wei Fan & Yahui Li & Donger Jin & Xuemeng Yu & Chenyue Wang & Xingyu Gao & Zhong Chen & E, 2024. "Strain regulates the photovoltaic performance of thick-film perovskites," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47019-8
    DOI: 10.1038/s41467-024-47019-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47019-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47019-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. G. Grancini & C. Roldán-Carmona & I. Zimmermann & E. Mosconi & X. Lee & D. Martineau & S. Narbey & F. Oswald & F. De Angelis & M. Graetzel & Mohammad Khaja Nazeeruddin, 2017. "One-Year stable perovskite solar cells by 2D/3D interface engineering," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    2. Renxing Lin & Jian Xu & Mingyang Wei & Yurui Wang & Zhengyuan Qin & Zhou Liu & Jinlong Wu & Ke Xiao & Bin Chen & So Min Park & Gang Chen & Harindi R. Atapattu & Kenneth R. Graham & Jun Xu & Jia Zhu & , 2022. "All-perovskite tandem solar cells with improved grain surface passivation," Nature, Nature, vol. 603(7899), pages 73-78, March.
    3. Eran Edri & Saar Kirmayer & Sabyasachi Mukhopadhyay & Konstantin Gartsman & Gary Hodes & David Cahen, 2014. "Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    4. Mengjin Yang & Zhen Li & Matthew O. Reese & Obadiah G. Reid & Dong Hoe Kim & Sebastian Siol & Talysa R. Klein & Yanfa Yan & Joseph J. Berry & Maikel F. A. M. van Hest & Kai Zhu, 2017. "Perovskite ink with wide processing window for scalable high-efficiency solar cells," Nature Energy, Nature, vol. 2(5), pages 1-9, May.
    5. Jaewang Park & Jongbeom Kim & Hyun-Sung Yun & Min Jae Paik & Eunseo Noh & Hyun Jung Mun & Min Gyu Kim & Tae Joo Shin & Sang Il Seok, 2023. "Controlled growth of perovskite layers with volatile alkylammonium chlorides," Nature, Nature, vol. 616(7958), pages 724-730, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bahram Abdollahi Nejand & David B. Ritzer & Hang Hu & Fabian Schackmar & Somayeh Moghadamzadeh & Thomas Feeney & Roja Singh & Felix Laufer & Raphael Schmager & Raheleh Azmi & Milian Kaiser & Tobias Ab, 2022. "Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency," Nature Energy, Nature, vol. 7(7), pages 620-630, July.
    2. Zhang, Jingyi & Chang, Nathan & Fagerholm, Cara & Qiu, Ming & Shuai, Ling & Egan, Renate & Yuan, Chris, 2022. "Techno-economic and environmental sustainability of industrial-scale productions of perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Shuchen Tan & Chongwen Li & Cheng Peng & Wenjian Yan & Hongkai Bu & Haokun Jiang & Fang Yue & Linbao Zhang & Hongtao Gao & Zhongmin Zhou, 2024. "Sustainable thermal regulation improves stability and efficiency in all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Kukkikatte Ramamurthy Rao, Harshadeep & Gemechu, Eskinder & Thakur, Ujwal & Shankar, Karthik & Kumar, Amit, 2021. "Techno-economic assessment of titanium dioxide nanorod-based perovskite solar cells: From lab-scale to large-scale manufacturing," Applied Energy, Elsevier, vol. 298(C).
    5. Weilun Li & Mengmeng Hao & Ardeshir Baktash & Lianzhou Wang & Joanne Etheridge, 2023. "The role of ion migration, octahedral tilt, and the A-site cation on the instability of Cs1-xFAxPbI3," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Jin Wen & Yicheng Zhao & Pu Wu & Yuxuan Liu & Xuntian Zheng & Renxing Lin & Sushu Wan & Ke Li & Haowen Luo & Yuxi Tian & Ludong Li & Hairen Tan, 2023. "Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Fangfang Wang & Mubai Li & Qiushuang Tian & Riming Sun & Hongzhuang Ma & Hongze Wang & Jingxi Chang & Zihao Li & Haoyu Chen & Jiupeng Cao & Aifei Wang & Jingjin Dong & You Liu & Jinzheng Zhao & Ying C, 2023. "Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Simone M. P. Meroni & Carys Worsley & Dimitrios Raptis & Trystan M. Watson, 2021. "Triple-Mesoscopic Carbon Perovskite Solar Cells: Materials, Processing and Applications," Energies, MDPI, vol. 14(2), pages 1-37, January.
    9. Yuanying Chi & Mingjian Yan & Yuexia Pang & Hongbo Lei, 2022. "Financial Risk Assessment of Photovoltaic Industry Listed Companies Based on Text Mining," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    10. Meng-Hsueh Kuo & Neda Neykova & Ivo Stachiv, 2024. "Overview of the Recent Findings in the Perovskite-Type Structures Used for Solar Cells and Hydrogen Storage," Energies, MDPI, vol. 17(18), pages 1-23, September.
    11. Min Xu & Jinjun Qu & Mai Li, 2022. "National Policies, Recent Research Hotspots, and Application of Sustainable Energy: Case of China, USA, and European Countries," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    12. Xue-Guang Chen & Linhan Lin & Guan-Yao Huang & Xiao-Mei Chen & Xiao-Ze Li & Yun-Ke Zhou & Yixuan Zou & Tairan Fu & Peng Li & Zhengcao Li & Hong-Bo Sun, 2024. "Optofluidic crystallithography for directed growth of single-crystalline halide perovskites," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Yuhang Liang & Feng Li & Xiangyuan Cui & Taoyuze Lv & Catherine Stampfl & Simon P. Ringer & Xudong Yang & Jun Huang & Rongkun Zheng, 2024. "Toward stabilization of formamidinium lead iodide perovskites by defect control and composition engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Shuxian Du & Hao Huang & Zhineng Lan & Peng Cui & Liang Li & Min Wang & Shujie Qu & Luyao Yan & Changxu Sun & Yingying Yang & Xinxin Wang & Meicheng Li, 2024. "Inhibiting perovskite decomposition by a creeper-inspired strategy enables efficient and stable perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Jiangang Feng & Xi Wang & Jia Li & Haoming Liang & Wen Wen & Ezra Alvianto & Cheng-Wei Qiu & Rui Su & Yi Hou, 2023. "Resonant perovskite solar cells with extended band edge," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Jin Zhou & Shiqiang Fu & Shun Zhou & Lishuai Huang & Cheng Wang & Hongling Guan & Dexin Pu & Hongsen Cui & Chen Wang & Ti Wang & Weiwei Meng & Guojia Fang & Weijun Ke, 2024. "Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Yongjin Gan & Guixin Qiu & Chenqing Yan & Zhaoxiang Zeng & Binyi Qin & Xueguang Bi & Yucheng Liu, 2023. "Numerical Analysis on the Effect of the Conduction Band Offset in Dion–Jacobson Perovskite Solar Cells," Energies, MDPI, vol. 16(23), pages 1-13, December.
    18. Tian Chen & Jiangsheng Xie & Bin Wen & Qixin Yin & Ruohao Lin & Shengcai Zhu & Pingqi Gao, 2023. "Inhibition of defect-induced α-to-δ phase transition for efficient and stable formamidinium perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
    20. Li, Bowei & Jayawardena, K.D. G. Imalka & Zhang, Jing & Bandara, Rajapakshe Mudiyanselage Indrachapa & Liu, Xueping & Bi, Jingxin & Silva, Shashini M. & Liu, Dongtao & Underwood, Cameron C.L. & Xiang,, 2024. "Stability of formamidinium tin triiodide-based inverted perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47019-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.