IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v584y2020i7821d10.1038_s41586-020-2590-4.html
   My bibliography  Save this article

Observation of superconducting diode effect

Author

Listed:
  • Fuyuki Ando

    (Kyoto University)

  • Yuta Miyasaka

    (Kyoto University)

  • Tian Li

    (Kyoto University)

  • Jun Ishizuka

    (Graduate School of Science, Kyoto University)

  • Tomonori Arakawa

    (Osaka University
    Osaka University)

  • Yoichi Shiota

    (Kyoto University)

  • Takahiro Moriyama

    (Kyoto University)

  • Youichi Yanase

    (Graduate School of Science, Kyoto University)

  • Teruo Ono

    (Kyoto University
    Osaka University)

Abstract

Nonlinear optical and electrical effects associated with a lack of spatial inversion symmetry allow direction-selective propagation and transport of quantum particles, such as photons1 and electrons2–9. The most common example of such nonreciprocal phenomena is a semiconductor diode with a p–n junction, with a low resistance in one direction and a high resistance in the other. Although the diode effect forms the basis of numerous electronic components, such as rectifiers, alternating–direct-current converters and photodetectors, it introduces an inevitable energy loss due to the finite resistance. Therefore, a worthwhile goal is to realize a superconducting diode that has zero resistance in only one direction. Here we demonstrate a magnetically controllable superconducting diode in an artificial superlattice [Nb/V/Ta]n without a centre of inversion. The nonreciprocal resistance versus current curve at the superconducting-to-normal transition was clearly observed by a direct-current measurement, and the difference of the critical current is considered to be related to the magnetochiral anisotropy caused by breaking of the spatial-inversion and time-reversal symmetries10–13. Owing to the nonreciprocal critical current, the [Nb/V/Ta]n superlattice exhibits zero resistance in only one direction. This superconducting diode effect enables phase-coherent and direction-selective charge transport, paving the way for the construction of non-dissipative electronic circuits.

Suggested Citation

  • Fuyuki Ando & Yuta Miyasaka & Tian Li & Jun Ishizuka & Tomonori Arakawa & Yoichi Shiota & Takahiro Moriyama & Youichi Yanase & Teruo Ono, 2020. "Observation of superconducting diode effect," Nature, Nature, vol. 584(7821), pages 373-376, August.
  • Handle: RePEc:nat:nature:v:584:y:2020:i:7821:d:10.1038_s41586-020-2590-4
    DOI: 10.1038/s41586-020-2590-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2590-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2590-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alon Gutfreund & Hisakazu Matsuki & Vadim Plastovets & Avia Noah & Laura Gorzawski & Nofar Fridman & Guang Yang & Alexander Buzdin & Oded Millo & Jason W. A. Robinson & Yonathan Anahory, 2023. "Direct observation of a superconducting vortex diode," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Ananthesh Sundaresh & Jukka I. Väyrynen & Yuli Lyanda-Geller & Leonid P. Rokhinson, 2023. "Diamagnetic mechanism of critical current non-reciprocity in multilayered superconductors," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. J. Díez-Mérida & A. Díez-Carlón & S. Y. Yang & Y.-M. Xie & X.-J. Gao & J. Senior & K. Watanabe & T. Taniguchi & X. Lu & A. P. Higginbotham & K. T. Law & Dmitri K. Efetov, 2023. "Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Taras Golod & Vladimir M. Krasnov, 2022. "Demonstration of a superconducting diode-with-memory, operational at zero magnetic field with switchable nonreciprocity," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Gang Qiu & Hung-Yu Yang & Lunhui Hu & Huairuo Zhang & Chih-Yen Chen & Yanfeng Lyu & Christopher Eckberg & Peng Deng & Sergiy Krylyuk & Albert V. Davydov & Ruixing Zhang & Kang L. Wang, 2023. "Emergent ferromagnetism with superconductivity in Fe(Te,Se) van der Waals Josephson junctions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Yuki M. Itahashi & Toshiya Ideue & Shintaro Hoshino & Chihiro Goto & Hiromasa Namiki & Takao Sasagawa & Yoshihiro Iwasa, 2022. "Giant second harmonic transport under time-reversal symmetry in a trigonal superconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Zhaowei Zhang & Naizhou Wang & Ning Cao & Aifeng Wang & Xiaoyuan Zhou & Kenji Watanabe & Takashi Taniguchi & Binghai Yan & Wei-bo Gao, 2022. "Controlled large non-reciprocal charge transport in an intrinsic magnetic topological insulator MnBi2Te4," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    8. E. Strambini & M. Spies & N. Ligato & S. Ilić & M. Rouco & Carmen González-Orellana & Maxim Ilyn & Celia Rogero & F. S. Bergeret & J. S. Moodera & P. Virtanen & T. T. Heikkilä & F. Giazotto, 2022. "Superconducting spintronic tunnel diode," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Jae-Keun Kim & Kun-Rok Jeon & Pranava K. Sivakumar & Jaechun Jeon & Chris Koerner & Georg Woltersdorf & Stuart S. P. Parkin, 2024. "Intrinsic supercurrent non-reciprocity coupled to the crystal structure of a van der Waals Josephson barrier," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Marco Valentini & Oliver Sagi & Levon Baghumyan & Thijs Gijsel & Jason Jung & Stefano Calcaterra & Andrea Ballabio & Juan Aguilera Servin & Kushagra Aggarwal & Marian Janik & Thomas Adletzberger & Rub, 2024. "Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Mohit Gupta & Gino V. Graziano & Mihir Pendharkar & Jason T. Dong & Connor P. Dempsey & Chris Palmstrøm & Vlad S. Pribiag, 2023. "Gate-tunable superconducting diode effect in a three-terminal Josephson device," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Lorenz Bauriedl & Christian Bäuml & Lorenz Fuchs & Christian Baumgartner & Nicolas Paulik & Jonas M. Bauer & Kai-Qiang Lin & John M. Lupton & Takashi Taniguchi & Kenji Watanabe & Christoph Strunk & Ni, 2022. "Supercurrent diode effect and magnetochiral anisotropy in few-layer NbSe2," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. T. Asaba & M. Naritsuka & H. Asaeda & Y. Kosuge & S. Ikemori & S. Suetsugu & Y. Kasahara & Y. Kohsaka & T. Terashima & A. Daido & Y. Yanase & Y. Matsuda, 2024. "Evidence for a finite-momentum Cooper pair in tricolor d-wave superconducting superlattices," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. James Jun He & Yukio Tanaka & Naoto Nagaosa, 2023. "The supercurrent diode effect and nonreciprocal paraconductivity due to the chiral structure of nanotubes," Nature Communications, Nature, vol. 14(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:584:y:2020:i:7821:d:10.1038_s41586-020-2590-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.