IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39083-3.html
   My bibliography  Save this article

The supercurrent diode effect and nonreciprocal paraconductivity due to the chiral structure of nanotubes

Author

Listed:
  • James Jun He

    (Hefei National Laboratory
    University of Science and Technology of China)

  • Yukio Tanaka

    (Nagoya University)

  • Naoto Nagaosa

    (RIKEN)

Abstract

The phenomenon that critical supercurrents along opposite directions become unequal is called the supercurrent diode effect (SDE). It has been observed in various systems and can often be understood by combining spin-orbit coupling and Zeeman field, which break the spatial-inversion and time-reversal symmetries, respectively. Here, we theoretically investigate another mechanism of breaking these symmetries and predict the existence of the SDE in chiral nanotubes without spin-orbit coupling. The symmetries are broken by the chiral structure and a magnetic flux through the tube. With a generalized Ginzburg-Landau theory, we obtain the main features of the SDE in its dependence on system parameters. We further show that the same Ginzburg-Landau free energy leads to another important manifestation of the nonreciprocity in superconducting systems, i.e., the nonreciprocal paraconductivity (NPC) slightly above the transition temperature. Our study suggests a new class of realistic platforms to investigate nonreciprocal properties of superconducting materials. It also provides a theoretical link between the SDE and the NPC, which were often studied separately.

Suggested Citation

  • James Jun He & Yukio Tanaka & Naoto Nagaosa, 2023. "The supercurrent diode effect and nonreciprocal paraconductivity due to the chiral structure of nanotubes," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39083-3
    DOI: 10.1038/s41467-023-39083-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39083-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39083-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. F. Qin & W. Shi & T. Ideue & M. Yoshida & A. Zak & R. Tenne & T. Kikitsu & D. Inoue & D. Hashizume & Y. Iwasa, 2017. "Superconductivity in a chiral nanotube," Nature Communications, Nature, vol. 8(1), pages 1-6, April.
    2. Fuyuki Ando & Yuta Miyasaka & Tian Li & Jun Ishizuka & Tomonori Arakawa & Yoichi Shiota & Takahiro Moriyama & Youichi Yanase & Teruo Ono, 2020. "Observation of superconducting diode effect," Nature, Nature, vol. 584(7821), pages 373-376, August.
    3. Kenji Yasuda & Hironori Yasuda & Tian Liang & Ryutaro Yoshimi & Atsushi Tsukazaki & Kei S. Takahashi & Naoto Nagaosa & Masashi Kawasaki & Yoshinori Tokura, 2019. "Nonreciprocal charge transport at topological insulator/superconductor interface," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    4. Lorenz Bauriedl & Christian Bäuml & Lorenz Fuchs & Christian Baumgartner & Nicolas Paulik & Jonas M. Bauer & Kai-Qiang Lin & John M. Lupton & Takashi Taniguchi & Kenji Watanabe & Christoph Strunk & Ni, 2022. "Supercurrent diode effect and magnetochiral anisotropy in few-layer NbSe2," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Yoshinori Tokura & Naoto Nagaosa, 2018. "Nonreciprocal responses from non-centrosymmetric quantum materials," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le Duc Anh & Keita Ishihara & Tomoki Hotta & Kohdai Inagaki & Hideki Maki & Takahiro Saeki & Masaki Kobayashi & Masaaki Tanaka, 2024. "Large superconducting diode effect in ion-beam patterned Sn-based superconductor nanowire/topological Dirac semimetal planar heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taras Golod & Vladimir M. Krasnov, 2022. "Demonstration of a superconducting diode-with-memory, operational at zero magnetic field with switchable nonreciprocity," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Zhaowei Zhang & Naizhou Wang & Ning Cao & Aifeng Wang & Xiaoyuan Zhou & Kenji Watanabe & Takashi Taniguchi & Binghai Yan & Wei-bo Gao, 2022. "Controlled large non-reciprocal charge transport in an intrinsic magnetic topological insulator MnBi2Te4," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    3. Yuki M. Itahashi & Toshiya Ideue & Shintaro Hoshino & Chihiro Goto & Hiromasa Namiki & Takao Sasagawa & Yoshihiro Iwasa, 2022. "Giant second harmonic transport under time-reversal symmetry in a trigonal superconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Junlin Xiong & Jiao Xie & Bin Cheng & Yudi Dai & Xinyu Cui & Lizheng Wang & Zenglin Liu & Ji Zhou & Naizhou Wang & Xianghan Xu & Xianhui Chen & Sang-Wook Cheong & Shi-Jun Liang & Feng Miao, 2024. "Electrical switching of Ising-superconducting nonreciprocity for quantum neuronal transistor," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Lorenz Bauriedl & Christian Bäuml & Lorenz Fuchs & Christian Baumgartner & Nicolas Paulik & Jonas M. Bauer & Kai-Qiang Lin & John M. Lupton & Takashi Taniguchi & Kenji Watanabe & Christoph Strunk & Ni, 2022. "Supercurrent diode effect and magnetochiral anisotropy in few-layer NbSe2," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Jae-Keun Kim & Kun-Rok Jeon & Pranava K. Sivakumar & Jaechun Jeon & Chris Koerner & Georg Woltersdorf & Stuart S. P. Parkin, 2024. "Intrinsic supercurrent non-reciprocity coupled to the crystal structure of a van der Waals Josephson barrier," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Fumiya Sekiguchi & Hideki Narita & Hideki Hirori & Teruo Ono & Yoshihiko Kanemitsu, 2024. "Anomalous behavior of critical current in a superconducting film triggered by DC plus terahertz current," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Xu Zhang & Tongshuai Zhu & Shuai Zhang & Zhongqiang Chen & Anke Song & Chong Zhang & Rongzheng Gao & Wei Niu & Yequan Chen & Fucong Fei & Yilin Tai & Guoan Li & Binghui Ge & Wenkai Lou & Jie Shen & Ha, 2024. "Light-induced giant enhancement of nonreciprocal transport at KTaO3-based interfaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. S. Reinhardt & T. Ascherl & A. Costa & J. Berger & S. Gronin & G. C. Gardner & T. Lindemann & M. J. Manfra & J. Fabian & D. Kochan & C. Strunk & N. Paradiso, 2024. "Link between supercurrent diode and anomalous Josephson effect revealed by gate-controlled interferometry," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. T. Asaba & M. Naritsuka & H. Asaeda & Y. Kosuge & S. Ikemori & S. Suetsugu & Y. Kasahara & Y. Kohsaka & T. Terashima & A. Daido & Y. Yanase & Y. Matsuda, 2024. "Evidence for a finite-momentum Cooper pair in tricolor d-wave superconducting superlattices," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Ananthesh Sundaresh & Jukka I. Väyrynen & Yuli Lyanda-Geller & Leonid P. Rokhinson, 2023. "Diamagnetic mechanism of critical current non-reciprocity in multilayered superconductors," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    12. Mohit Gupta & Gino V. Graziano & Mihir Pendharkar & Jason T. Dong & Connor P. Dempsey & Chris Palmstrøm & Vlad S. Pribiag, 2023. "Gate-tunable superconducting diode effect in a three-terminal Josephson device," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Geert L. J. A. Rikken & Narcis Avarvari, 2022. "Dielectric magnetochiral anisotropy," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    14. Šetrajčić, Jovan P. & Ilić, Dušan I. & Jaćimovski, Stevo K. & Vučenović, Siniša M., 2021. "Impact of surface conditions changes on changes in thermodynamic properties of quasi 2D crystals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    15. J. Díez-Mérida & A. Díez-Carlón & S. Y. Yang & Y.-M. Xie & X.-J. Gao & J. Senior & K. Watanabe & T. Taniguchi & X. Lu & A. P. Higginbotham & K. T. Law & Dmitri K. Efetov, 2023. "Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    16. Junhyeon Jo & Yuan Peisen & Haozhe Yang & Samuel Mañas-Valero & José J. Baldoví & Yao Lu & Eugenio Coronado & Fèlix Casanova & F. Sebastian Bergeret & Marco Gobbi & Luis E. Hueso, 2023. "Local control of superconductivity in a NbSe2/CrSBr van der Waals heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    17. Junhyeon Jo & Jung Hwa Kim & Choong H. Kim & Jaebyeong Lee & Daeseong Choe & Inseon Oh & Seunghyun Lee & Zonghoon Lee & Hosub Jin & Jung-Woo Yoo, 2022. "Defect-gradient-induced Rashba effect in van der Waals PtSe2 layers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Ziqian Wang & Meng Wang & Jannis Lehmann & Yuki Shiomi & Taka-hisa Arima & Naoto Nagaosa & Yoshinori Tokura & Naoki Ogawa, 2024. "Electric-field-enhanced second-harmonic domain contrast and nonreciprocity in a van der Waals antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    19. Hidetoshi Masuda & Takeshi Seki & Jun-ichiro Ohe & Yoichi Nii & Hiroto Masuda & Koki Takanashi & Yoshinori Onose, 2024. "Room temperature chirality switching and detection in a helimagnetic MnAu2 thin film," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Ruofan Du & Yuzhu Wang & Mo Cheng & Peng Wang & Hui Li & Wang Feng & Luying Song & Jianping Shi & Jun He, 2022. "Two-dimensional multiferroic material of metallic p-doped SnSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39083-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.