IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44114-0.html
   My bibliography  Save this article

Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium

Author

Listed:
  • Marco Valentini

    (Institute of Science and Technology Austria)

  • Oliver Sagi

    (Institute of Science and Technology Austria)

  • Levon Baghumyan

    (Institute of Science and Technology Austria)

  • Thijs Gijsel

    (Institute of Science and Technology Austria
    Eindhoven University of Technology)

  • Jason Jung

    (Eindhoven University of Technology)

  • Stefano Calcaterra

    (Politecnico di Milano)

  • Andrea Ballabio

    (Politecnico di Milano)

  • Juan Aguilera Servin

    (Institute of Science and Technology Austria)

  • Kushagra Aggarwal

    (Institute of Science and Technology Austria
    University of Oxford)

  • Marian Janik

    (Institute of Science and Technology Austria)

  • Thomas Adletzberger

    (Institute of Science and Technology Austria)

  • Rubén Seoane Souto

    (University of Copenhagen
    Consejo Superior de Investigaciones Científicas (ICMM-CSIC))

  • Martin Leijnse

    (Lund University)

  • Jeroen Danon

    (Norwegian University of Science and Technology)

  • Constantin Schrade

    (Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Louisiana State University)

  • Erik Bakkers

    (Eindhoven University of Technology)

  • Daniel Chrastina

    (Politecnico di Milano)

  • Giovanni Isella

    (Politecnico di Milano)

  • Georgios Katsaros

    (Institute of Science and Technology Austria)

Abstract

Superconductor/semiconductor hybrid devices have attracted increasing interest in the past years. Superconducting electronics aims to complement semiconductor technology, while hybrid architectures are at the forefront of new ideas such as topological superconductivity and protected qubits. In this work, we engineer the induced superconductivity in two-dimensional germanium hole gas by varying the distance between the quantum well and the aluminum. We demonstrate a hard superconducting gap and realize an electrically and flux tunable superconducting diode using a superconducting quantum interference device (SQUID). This allows to tune the current phase relation (CPR), to a regime where single Cooper pair tunneling is suppressed, creating a $$\sin \left(2\varphi \right)$$ sin 2 φ CPR. Shapiro experiments complement this interpretation and the microwave drive allows to create a diode with ≈ 100% efficiency. The reported results open up the path towards integration of spin qubit devices, microwave resonators and (protected) superconducting qubits on the same silicon technology compatible platform.

Suggested Citation

  • Marco Valentini & Oliver Sagi & Levon Baghumyan & Thijs Gijsel & Jason Jung & Stefano Calcaterra & Andrea Ballabio & Juan Aguilera Servin & Kushagra Aggarwal & Marian Janik & Thomas Adletzberger & Rub, 2024. "Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44114-0
    DOI: 10.1038/s41467-023-44114-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44114-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44114-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mohit Gupta & Gino V. Graziano & Mihir Pendharkar & Jason T. Dong & Connor P. Dempsey & Chris Palmstrøm & Vlad S. Pribiag, 2023. "Gate-tunable superconducting diode effect in a three-terminal Josephson device," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Tom Dvir & Guanzhong Wang & Nick Loo & Chun-Xiao Liu & Grzegorz P. Mazur & Alberto Bordin & Sebastiaan L. D. Haaf & Ji-Yin Wang & David Driel & Francesco Zatelli & Xiang Li & Filip K. Malinowski & Sas, 2023. "Realization of a minimal Kitaev chain in coupled quantum dots," Nature, Nature, vol. 614(7948), pages 445-450, February.
    3. Heng Wu & Yaojia Wang & Yuanfeng Xu & Pranava K. Sivakumar & Chris Pasco & Ulderico Filippozzi & Stuart S. P. Parkin & Yu-Jia Zeng & Tyrel McQueen & Mazhar N. Ali, 2022. "The field-free Josephson diode in a van der Waals heterostructure," Nature, Nature, vol. 604(7907), pages 653-656, April.
    4. Arunav Bordoloi & Valentina Zannier & Lucia Sorba & Christian Schönenberger & Andreas Baumgartner, 2022. "Spin cross-correlation experiments in an electron entangler," Nature, Nature, vol. 612(7940), pages 454-458, December.
    5. Guanzhong Wang & Tom Dvir & Grzegorz P. Mazur & Chun-Xiao Liu & Nick van Loo & Sebastiaan L. D. ten Haaf & Alberto Bordin & Sasa Gazibegovic & Ghada Badawy & Erik P. A. M. Bakkers & Michael Wimmer & L, 2022. "Singlet and triplet Cooper pair splitting in hybrid superconducting nanowires," Nature, Nature, vol. 612(7940), pages 448-453, December.
    6. Fuyuki Ando & Yuta Miyasaka & Tian Li & Jun Ishizuka & Tomonori Arakawa & Yoichi Shiota & Takahiro Moriyama & Youichi Yanase & Teruo Ono, 2020. "Observation of superconducting diode effect," Nature, Nature, vol. 584(7821), pages 373-376, August.
    7. N. W. Hendrickx & D. P. Franke & A. Sammak & M. Kouwenhoven & D. Sabbagh & L. Yeoh & R. Li & M. L. V. Tagliaferri & M. Virgilio & G. Capellini & G. Scappucci & M. Veldhorst, 2018. "Gate-controlled quantum dots and superconductivity in planar germanium," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    8. Martina Trahms & Larissa Melischek & Jacob F. Steiner & Bharti Mahendru & Idan Tamir & Nils Bogdanoff & Olof Peters & Gaël Reecht & Clemens B. Winkelmann & Felix Oppen & Katharina J. Franke, 2023. "Diode effect in Josephson junctions with a single magnetic atom," Nature, Nature, vol. 615(7953), pages 628-633, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Carlos Estrada Saldaña & Alexandros Vekris & Luka Pavešič & Rok Žitko & Kasper Grove-Rasmussen & Jesper Nygård, 2024. "Correlation between two distant quasiparticles in separate superconducting islands mediated by a single spin," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Qingzhen Wang & Sebastiaan L. D. Haaf & Ivan Kulesh & Di Xiao & Candice Thomas & Michael J. Manfra & Srijit Goswami, 2023. "Triplet correlations in Cooper pair splitters realized in a two-dimensional electron gas," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Junlin Xiong & Jiao Xie & Bin Cheng & Yudi Dai & Xinyu Cui & Lizheng Wang & Zenglin Liu & Ji Zhou & Naizhou Wang & Xianghan Xu & Xianhui Chen & Sang-Wook Cheong & Shi-Jun Liang & Feng Miao, 2024. "Electrical switching of Ising-superconducting nonreciprocity for quantum neuronal transistor," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Francesco Zatelli & David van Driel & Di Xu & Guanzhong Wang & Chun-Xiao Liu & Alberto Bordin & Bart Roovers & Grzegorz P. Mazur & Nick van Loo & Jan C. Wolff & A. Mert Bozkurt & Ghada Badawy & Sasa G, 2024. "Robust poor man’s Majorana zero modes using Yu-Shiba-Rusinov states," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. David Driel & Guanzhong Wang & Alberto Bordin & Nick Loo & Francesco Zatelli & Grzegorz P. Mazur & Di Xu & Sasa Gazibegovic & Ghada Badawy & Erik P. A. M. Bakkers & Leo P. Kouwenhoven & Tom Dvir, 2023. "Spin-filtered measurements of Andreev bound states in semiconductor-superconductor nanowire devices," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Jae-Keun Kim & Kun-Rok Jeon & Pranava K. Sivakumar & Jaechun Jeon & Chris Koerner & Georg Woltersdorf & Stuart S. P. Parkin, 2024. "Intrinsic supercurrent non-reciprocity coupled to the crystal structure of a van der Waals Josephson barrier," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Fumiya Sekiguchi & Hideki Narita & Hideki Hirori & Teruo Ono & Yoshihiko Kanemitsu, 2024. "Anomalous behavior of critical current in a superconducting film triggered by DC plus terahertz current," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. J. Díez-Mérida & A. Díez-Carlón & S. Y. Yang & Y.-M. Xie & X.-J. Gao & J. Senior & K. Watanabe & T. Taniguchi & X. Lu & A. P. Higginbotham & K. T. Law & Dmitri K. Efetov, 2023. "Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    9. Gang Qiu & Hung-Yu Yang & Lunhui Hu & Huairuo Zhang & Chih-Yen Chen & Yanfeng Lyu & Christopher Eckberg & Peng Deng & Sergiy Krylyuk & Albert V. Davydov & Ruixing Zhang & Kang L. Wang, 2023. "Emergent ferromagnetism with superconductivity in Fe(Te,Se) van der Waals Josephson junctions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Le Duc Anh & Keita Ishihara & Tomoki Hotta & Kohdai Inagaki & Hideki Maki & Takahiro Saeki & Masaki Kobayashi & Masaaki Tanaka, 2024. "Large superconducting diode effect in ion-beam patterned Sn-based superconductor nanowire/topological Dirac semimetal planar heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Taras Golod & Vladimir M. Krasnov, 2022. "Demonstration of a superconducting diode-with-memory, operational at zero magnetic field with switchable nonreciprocity," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Lorenz Bauriedl & Christian Bäuml & Lorenz Fuchs & Christian Baumgartner & Nicolas Paulik & Jonas M. Bauer & Kai-Qiang Lin & John M. Lupton & Takashi Taniguchi & Kenji Watanabe & Christoph Strunk & Ni, 2022. "Supercurrent diode effect and magnetochiral anisotropy in few-layer NbSe2," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. James Jun He & Yukio Tanaka & Naoto Nagaosa, 2023. "The supercurrent diode effect and nonreciprocal paraconductivity due to the chiral structure of nanotubes," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    14. Zhaowei Zhang & Naizhou Wang & Ning Cao & Aifeng Wang & Xiaoyuan Zhou & Kenji Watanabe & Takashi Taniguchi & Binghai Yan & Wei-bo Gao, 2022. "Controlled large non-reciprocal charge transport in an intrinsic magnetic topological insulator MnBi2Te4," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    15. S. Reinhardt & T. Ascherl & A. Costa & J. Berger & S. Gronin & G. C. Gardner & T. Lindemann & M. J. Manfra & J. Fabian & D. Kochan & C. Strunk & N. Paradiso, 2024. "Link between supercurrent diode and anomalous Josephson effect revealed by gate-controlled interferometry," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. E. Strambini & M. Spies & N. Ligato & S. Ilić & M. Rouco & Carmen González-Orellana & Maxim Ilyn & Celia Rogero & F. S. Bergeret & J. S. Moodera & P. Virtanen & T. T. Heikkilä & F. Giazotto, 2022. "Superconducting spintronic tunnel diode," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    17. Alon Gutfreund & Hisakazu Matsuki & Vadim Plastovets & Avia Noah & Laura Gorzawski & Nofar Fridman & Guang Yang & Alexander Buzdin & Oded Millo & Jason W. A. Robinson & Yonathan Anahory, 2023. "Direct observation of a superconducting vortex diode," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    18. Tian Le & Ruihan Zhang & Changcun Li & Ruiyang Jiang & Haohao Sheng & Linfeng Tu & Xuewei Cao & Zhaozheng Lyu & Jie Shen & Guangtong Liu & Fucai Liu & Zhijun Wang & Li Lu & Fanming Qu, 2024. "Magnetic field filtering of the boundary supercurrent in unconventional metal NiTe2-based Josephson junctions," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. T. Asaba & M. Naritsuka & H. Asaeda & Y. Kosuge & S. Ikemori & S. Suetsugu & Y. Kasahara & Y. Kohsaka & T. Terashima & A. Daido & Y. Yanase & Y. Matsuda, 2024. "Evidence for a finite-momentum Cooper pair in tricolor d-wave superconducting superlattices," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Ananthesh Sundaresh & Jukka I. Väyrynen & Yuli Lyanda-Geller & Leonid P. Rokhinson, 2023. "Diamagnetic mechanism of critical current non-reciprocity in multilayered superconductors," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44114-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.