IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09945-w.html
   My bibliography  Save this article

Key determinants of global land-use projections

Author

Listed:
  • Elke Stehfest

    (PBL Netherlands Environmental Assessment Agency)

  • Willem-Jan Zeist

    (PBL Netherlands Environmental Assessment Agency)

  • Hugo Valin

    (International Institute for Applied System Analysis (IIASA))

  • Petr Havlik

    (International Institute for Applied System Analysis (IIASA))

  • Alexander Popp

    (Potsdam Institute for Climate Impact Research (PIK))

  • Page Kyle

    (Joint Global Change Research Institute, Pacific Northwest National Laboratory)

  • Andrzej Tabeau

    (Wageningen University and Research)

  • Daniel Mason-D’Croz

    (International Food Policy Research Institute (IFPRI)
    Commonwealth Scientific and Industrial Research Organisation (CSIRO))

  • Tomoko Hasegawa

    (International Institute for Applied System Analysis (IIASA)
    National Institute for Environmental Studies (NIES)
    Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu)

  • Benjamin L. Bodirsky

    (Potsdam Institute for Climate Impact Research (PIK))

  • Katherine Calvin

    (Joint Global Change Research Institute, Pacific Northwest National Laboratory)

  • Jonathan C. Doelman

    (PBL Netherlands Environmental Assessment Agency)

  • Shinichiro Fujimori

    (International Institute for Applied System Analysis (IIASA)
    National Institute for Environmental Studies (NIES)
    Kyoto University)

  • Florian Humpenöder

    (Potsdam Institute for Climate Impact Research (PIK))

  • Hermann Lotze-Campen

    (Potsdam Institute for Climate Impact Research (PIK)
    Humboldt-Universität zu Berlin)

  • Hans Meijl

    (Wageningen University and Research)

  • Keith Wiebe

    (International Food Policy Research Institute (IFPRI))

Abstract

Land use is at the core of various sustainable development goals. Long-term climate foresight studies have structured their recent analyses around five socio-economic pathways (SSPs), with consistent storylines of future macroeconomic and societal developments; however, model quantification of these scenarios shows substantial heterogeneity in land-use projections. Here we build on a recently developed sensitivity approach to identify how future land use depends on six distinct socio-economic drivers (population, wealth, consumption preferences, agricultural productivity, land-use regulation, and trade) and their interactions. Spread across models arises mostly from diverging sensitivities to long-term drivers and from various representations of land-use regulation and trade, calling for reconciliation efforts and more empirical research. Most influential determinants for future cropland and pasture extent are population and agricultural efficiency. Furthermore, land-use regulation and consumption changes can play a key role in reducing both land use and food-security risks, and need to be central elements in sustainable development strategies.

Suggested Citation

  • Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09945-w
    DOI: 10.1038/s41467-019-09945-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09945-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09945-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hertel, Thomas W., 2010. "The Global Supply and Demand for Agricultural Land in 2050: A Perfect Storm in the Making?," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 92639, Agricultural and Applied Economics Association.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Zhao & Bryan K. Mignone & Marshall A. Wise & Haewon C. McJeon, 2024. "Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Arshad, Salman & Ahmad, Sajid Rashid & Abbas, Sawaid & Asharf, Ather & Siddiqui, Nadia Asad & Islam, Zia ul, 2022. "Quantifying the contribution of diminishing green spaces and urban sprawl to urban heat island effect in a rapidly urbanizing metropolitan city of Pakistan," Land Use Policy, Elsevier, vol. 113(C).
    3. Florian Humpenöder & Alexander Popp & Carl-Friedrich Schleussner & Anton Orlov & Michael Gregory Windisch & Inga Menke & Julia Pongratz & Felix Havermann & Wim Thiery & Fei Luo & Patrick v. Jeetze & J, 2022. "Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Müller-Casseres, Eduardo & Edelenbosch, Oreane Y. & Szklo, Alexandre & Schaeffer, Roberto & van Vuuren, Detlef P., 2021. "Global futures of trade impacting the challenge to decarbonize the international shipping sector," Energy, Elsevier, vol. 237(C).
    5. Yu, Wusheng & Clora, Francesco & Costa, Louis & Baudry, Gino, 2021. "Dietary Transitions As Climate Mitigation Measures in Europe: Implications of Supply-Side Responses and Trade Policy Regimes," 2021 Conference, August 17-31, 2021, Virtual 315912, International Association of Agricultural Economists.
    6. Sarfo, Isaac & Bi, Shuoben & Xu, Xiuhua & Yeboah, Emmanuel & Kwang, Clement & Batame, Michael & Addai, Foster Kofi & Adamu, Umar Wakil & Appea, Emmanuella Aboagye & Djan, Michael Atuahene & Otchwemah,, 2023. "Planning for cooler cities in Ghana: Contribution of green infrastructure to urban heat mitigation in Kumasi Metropolis," Land Use Policy, Elsevier, vol. 133(C).
    7. Mark Bomford, 2023. "More bytes per acre: do vertical farming’s land sparing promises stand on solid ground?," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 40(3), pages 879-895, September.
    8. Bruno, Daniel & Sorando, Ricardo & Álvarez-Farizo, Begoña & Castellano, Clara & Céspedes, Vanessa & Gallardo, Belinda & Jiménez, Juan J. & López, M. Victoria & López-Flores, Rocío & Moret-Fernández, D, 2021. "Depopulation impacts on ecosystem services in Mediterranean rural areas," Ecosystem Services, Elsevier, vol. 52(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haile, M.G. & Kalkuhl, M., 2014. "Volatility in the international food markets: implications for global agricultural supply and for market and price policy," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 49, March.
    2. Marcello De Maria, 2019. "Understanding Land in the Context of Large-Scale Land Acquisitions: A Brief History of Land in Economics," Land, MDPI, vol. 8(1), pages 1-14, January.
    3. Mekbib G. Haile & Matthias Kalkuhl & Joachim Braun, 2014. "Inter- and intra-seasonal crop acreage response to international food prices and implications of volatility," Agricultural Economics, International Association of Agricultural Economists, vol. 45(6), pages 693-710, November.
    4. Keijiro Otsuka & Frank Place, 2013. "Evolutionary Changes in Land Tenure and Agricultural Intensification in Sub-Saharan Africa," GRIPS Discussion Papers 13-22, National Graduate Institute for Policy Studies.
    5. Valenzuela, Ernesto & Anderson, Kym, 2011. "Climate change and food security to 2030: a global economy-wide perspective," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 11(01), pages 1-30, November.
    6. Suh, Dong Hee & Moss, Charles B., 2014. "Exploring Agricultural Production Systems: Interactions between the Crop and Livestock Sectors," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170149, Agricultural and Applied Economics Association.
    7. Stephen Shisanya & Paramu Mafongoya, 2016. "Adaptation to climate change and the impacts on household food security among rural farmers in uMzinyathi District of Kwazulu-Natal, South Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(3), pages 597-608, June.
    8. T. Brunelle & P. Dumas & W. Ben Aoun & Benoit Gabrielle, 2018. "Unravelling Land-Use Change Mechanisms at Global and Regional Scales," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-14, September.
    9. Harvey James, 2011. "From the editor," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 28(4), pages 461-463, December.
    10. Rees, Charles & Grovermann, Christian & Finger, Robert, 2023. "National organic action plans and organic farmland area growth in Europe," Food Policy, Elsevier, vol. 121(C).
    11. Sands, Ronald & Jones, Carol & Marshall, Elizabeth P., 2014. "Global Drivers of Agricultural Demand and Supply," Economic Research Report 186137, United States Department of Agriculture, Economic Research Service.
    12. Ngoma, Hambulo & Pelletier, Johanne & Mulenga, Brian P. & Subakanya, Mitelo, 2021. "Climate-smart agriculture, cropland expansion and deforestation in Zambia: Linkages, processes and drivers," Land Use Policy, Elsevier, vol. 107(C).
    13. Mwambo, Francis Molua & Fürst, Christine & Nyarko, Benjamin K. & Borgemeister, Christian & Martius, Christopher, 2020. "Maize production and environmental costs: Resource evaluation and strategic land use planning for food security in northern Ghana by means of coupled emergy and data envelopment analysis," Land Use Policy, Elsevier, vol. 95(C).
    14. Hirsch, Cornelius & Krisztin, Tamás & See, Linda, 2020. "Water Resources as Determinants for Foreign Direct Investments in Land - A Gravity Analysis of Foreign Land Acquisitions," Ecological Economics, Elsevier, vol. 170(C).
    15. Ricardo Arguello C & Daniel Valderrama G. & Sandra Acero W., 2011. "Poverty impacts of agricultural policy adjustments in an opening economy: the case of Colombia," Documentos de Trabajo 8575, Universidad del Rosario.
    16. Van Meerbeek, Koenraad & Muys, Bart & Hermy, Martin, 2019. "Lignocellulosic biomass for bioenergy beyond intensive cropland and forests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 139-149.
    17. Younghyeon Jeon & Hoa Hoang & Wyatt Thompson & David Abler, 2024. "A meta‐analysis of U.S. food demand elasticities to detect the impacts of scanner data," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 46(2), pages 760-780, June.
    18. Hertel, Thomas W., 2021. "Educating the Next Generation of Interdisciplinary Researchers to Tackle Global Sustainability Challenges: A Graduate Course," Applied Economics Teaching Resources (AETR), Agricultural and Applied Economics Association, vol. 2(6), January.
    19. Yi Qu & Xiao Lyu & Wenlong Peng & Zongfei Xin, 2021. "How to Evaluate the Green Utilization Efficiency of Cultivated Land in a Farming Household? A Case Study of Shandong Province, China," Land, MDPI, vol. 10(8), pages 1-18, July.
    20. Hertel, Thomas W., 2013. "Land, Environment and Climate: Contributing to the Global Public Good," WIDER Working Paper Series 107, World Institute for Development Economic Research (UNU-WIDER).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09945-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.