Author
Listed:
- Hong Zhang
(École Polytechnique Fédérale de Lausanne)
- Felix Thomas Eickemeyer
(École Polytechnique Fédérale de Lausanne)
- Zhiwen Zhou
(École Polytechnique Fédérale de Lausanne)
- Marko Mladenović
(École Polytechnique Fédérale de Lausanne)
- Farzaneh Jahanbakhshi
(École Polytechnique Fédérale de Lausanne)
- Lena Merten
(Universität Tübingen)
- Alexander Hinderhofer
(Universität Tübingen)
- Michael A. Hope
(École Polytechnique Fédérale de Lausanne)
- Olivier Ouellette
(École Polytechnique Fédérale de Lausanne)
- Aditya Mishra
(École Polytechnique Fédérale de Lausanne)
- Paramvir Ahlawat
(École Polytechnique Fédérale de Lausanne)
- Dan Ren
(École Polytechnique Fédérale de Lausanne)
- Tzu-Sen Su
(École Polytechnique Fédérale de Lausanne)
- Anurag Krishna
(École Polytechnique Fédérale de Lausanne)
- Zaiwei Wang
(École Polytechnique Fédérale de Lausanne)
- Zhaowen Dong
(École Polytechnique Fédérale de Lausanne)
- Jinming Guo
(École Polytechnique Fédérale de Lausanne)
- Shaik M. Zakeeruddin
(École Polytechnique Fédérale de Lausanne)
- Frank Schreiber
(Universität Tübingen)
- Anders Hagfeldt
(École Polytechnique Fédérale de Lausanne
Uppsala University)
- Lyndon Emsley
(École Polytechnique Fédérale de Lausanne)
- Ursula Rothlisberger
(École Polytechnique Fédérale de Lausanne)
- Jovana V. Milić
(École Polytechnique Fédérale de Lausanne
Adolphe Merkle Institute of the University of Fribourg in Switzerland)
- Michael Grätzel
(École Polytechnique Fédérale de Lausanne)
Abstract
Formamidinium lead iodide perovskites are promising light-harvesting materials, yet stabilizing them under operating conditions without compromising optimal optoelectronic properties remains challenging. We report a multimodal host–guest complexation strategy to overcome this challenge using a crown ether, dibenzo-21-crown-7, which acts as a vehicle that assembles at the interface and delivers Cs+ ions into the interior while modulating the material. This provides a local gradient of doping at the nanoscale that assists in photoinduced charge separation while passivating surface and bulk defects, stabilizing the perovskite phase through a synergistic effect of the host, guest, and host–guest complex. The resulting solar cells show power conversion efficiencies exceeding 24% and enhanced operational stability, maintaining over 95% of their performance without encapsulation for 500 h under continuous operation. Moreover, the host contributes to binding lead ions, reducing their environmental impact. This supramolecular strategy illustrates the broad implications of host–guest chemistry in photovoltaics.
Suggested Citation
Hong Zhang & Felix Thomas Eickemeyer & Zhiwen Zhou & Marko Mladenović & Farzaneh Jahanbakhshi & Lena Merten & Alexander Hinderhofer & Michael A. Hope & Olivier Ouellette & Aditya Mishra & Paramvir Ahl, 2021.
"Multimodal host–guest complexation for efficient and stable perovskite photovoltaics,"
Nature Communications, Nature, vol. 12(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23566-2
DOI: 10.1038/s41467-021-23566-2
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Chenxu Zhao & Zhiwen Zhou & Masaud Almalki & Michael A. Hope & Jiashang Zhao & Thibaut Gallet & Anurag Krishna & Aditya Mishra & Felix T. Eickemeyer & Jia Xu & Yingguo Yang & Shaik M. Zakeeruddin & Al, 2024.
"Stabilization of highly efficient perovskite solar cells with a tailored supramolecular interface,"
Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Shuai You & Felix T. Eickemeyer & Jing Gao & Jun-Ho Yum & Xin Zheng & Dan Ren & Meng Xia & Rui Guo & Yaoguang Rong & Shaik M. Zakeeruddin & Kevin Sivula & Jiang Tang & Zhongjin Shen & Xiong Li & Micha, 2023.
"Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells,"
Nature Energy, Nature, vol. 8(5), pages 515-525, May.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23566-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.