IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v580y2020i7805d10.1038_s41586-020-2219-7.html
   My bibliography  Save this article

Two-dimensional halide perovskite lateral epitaxial heterostructures

Author

Listed:
  • Enzheng Shi

    (Purdue University)

  • Biao Yuan

    (ShanghaiTech University)

  • Stephen B. Shiring

    (Purdue University)

  • Yao Gao

    (Purdue University)

  • Akriti

    (Purdue University)

  • Yunfan Guo

    (Massachusetts Institute of Technology)

  • Cong Su

    (Massachusetts Institutes of Technology)

  • Minliang Lai

    (University of California)

  • Peidong Yang

    (University of California
    Lawrence Berkeley National Laboratory
    Kavli Energy NanoScience Institute)

  • Jing Kong

    (Massachusetts Institute of Technology)

  • Brett M. Savoie

    (Purdue University)

  • Yi Yu

    (ShanghaiTech University)

  • Letian Dou

    (Purdue University
    Purdue University)

Abstract

Epitaxial heterostructures based on oxide perovskites and III–V, II–VI and transition metal dichalcogenide semiconductors form the foundation of modern electronics and optoelectronics1–7. Halide perovskites—an emerging family of tunable semiconductors with desirable properties—are attractive for applications such as solution-processed solar cells, light-emitting diodes, detectors and lasers8–15. Their inherently soft crystal lattice allows greater tolerance to lattice mismatch, making them promising for heterostructure formation and semiconductor integration16,17. Atomically sharp epitaxial interfaces are necessary to improve performance and for device miniaturization. However, epitaxial growth of atomically sharp heterostructures of halide perovskites has not yet been achieved, owing to their high intrinsic ion mobility, which leads to interdiffusion and large junction widths18–21, and owing to their poor chemical stability, which leads to decomposition of prior layers during the fabrication of subsequent layers. Therefore, understanding the origins of this instability and identifying effective approaches to suppress ion diffusion are of great importance22–26. Here we report an effective strategy to substantially inhibit in-plane ion diffusion in two-dimensional halide perovskites by incorporating rigid π-conjugated organic ligands. We demonstrate highly stable and tunable lateral epitaxial heterostructures, multiheterostructures and superlattices. Near-atomically sharp interfaces and epitaxial growth are revealed by low-dose aberration-corrected high-resolution transmission electron microscopy. Molecular dynamics simulations confirm the reduced heterostructure disorder and larger vacancy formation energies of the two-dimensional perovskites in the presence of conjugated ligands. These findings provide insights into the immobilization and stabilization of halide perovskite semiconductors and demonstrate a materials platform for complex and molecularly thin superlattices, devices and integrated circuits.

Suggested Citation

  • Enzheng Shi & Biao Yuan & Stephen B. Shiring & Yao Gao & Akriti & Yunfan Guo & Cong Su & Minliang Lai & Peidong Yang & Jing Kong & Brett M. Savoie & Yi Yu & Letian Dou, 2020. "Two-dimensional halide perovskite lateral epitaxial heterostructures," Nature, Nature, vol. 580(7805), pages 614-620, April.
  • Handle: RePEc:nat:nature:v:580:y:2020:i:7805:d:10.1038_s41586-020-2219-7
    DOI: 10.1038/s41586-020-2219-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2219-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2219-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingzhi Chen & Hongzheng Dong & Mengfan Xue & Chunsheng Yang & Pin Wang & Yanliang Yang & Heng Zhu & Congping Wu & Yingfang Yao & Wenjun Luo & Zhigang Zou, 2021. "Faradaic junction and isoenergetic charge transfer mechanism on semiconductor/semiconductor interfaces," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Yingjie Tang & Peng Jin & Yan Wang & Dingwei Li & Yitong Chen & Peng Ran & Wei Fan & Kun Liang & Huihui Ren & Xuehui Xu & Rui Wang & Yang (Michael) Yang & Bowen Zhu, 2023. "Enabling low-drift flexible perovskite photodetectors by electrical modulation for wearable health monitoring and weak light imaging," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Bo Li & Qi Liu & Jianqiu Gong & Shuai Li & Chunlei Zhang & Danpeng Gao & Zhongwei Chen & Zhen Li & Xin Wu & Dan Zhao & Zexin Yu & Xintong Li & Yan Wang & Haipeng Lu & Xiao Cheng Zeng & Zonglong Zhu, 2024. "Harnessing strong aromatic conjugation in low-dimensional perovskite heterojunctions for high-performance photovoltaic devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Huilong Hong & Songhao Guo & Leyang Jin & Yuhong Mao & Yuguang Chen & Jiazhen Gu & Shaochuang Chen & Xu Huang & Yan Guan & Xiaotong Li & Yan Li & Xujie Lü & Yongping Fu, 2024. "Two-dimensional lead halide perovskite lateral homojunctions enabled by phase pinning," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Li Zhai & Sara T. Gebre & Bo Chen & Dan Xu & Junze Chen & Zijian Li & Yawei Liu & Hua Yang & Chongyi Ling & Yiyao Ge & Wei Zhai & Changsheng Chen & Lu Ma & Qinghua Zhang & Xuefei Li & Yujie Yan & Xiny, 2023. "Epitaxial growth of highly symmetrical branched noble metal-semiconductor heterostructures with efficient plasmon-induced hot-electron transfer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Kang Wang & Zih-Yu Lin & Zihan Zhang & Linrui Jin & Ke Ma & Aidan H. Coffey & Harindi R. Atapattu & Yao Gao & Jee Yung Park & Zitang Wei & Blake P. Finkenauer & Chenhui Zhu & Xiangeng Meng & Sarah N. , 2023. "Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Shuai You & Felix T. Eickemeyer & Jing Gao & Jun-Ho Yum & Xin Zheng & Dan Ren & Meng Xia & Rui Guo & Yaoguang Rong & Shaik M. Zakeeruddin & Kevin Sivula & Jiang Tang & Zhongjin Shen & Xiong Li & Micha, 2023. "Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells," Nature Energy, Nature, vol. 8(5), pages 515-525, May.
    8. Mengmeng Ma & Xuliang Zhang & Xiao Chen & Hao Xiong & Liang Xu & Tao Cheng & Jianyu Yuan & Fei Wei & Boyuan Shen, 2023. "In situ imaging of the atomic phase transition dynamics in metal halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:580:y:2020:i:7805:d:10.1038_s41586-020-2219-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.