IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57227-5.html
   My bibliography  Save this article

Ephemeral superconductivity atop the false vacuum

Author

Listed:
  • Gal Shavit

    (California Institute of Technology
    California Institute of Technology)

  • Stevan Nadj-Perge

    (California Institute of Technology
    California Institute of Technology)

  • Gil Refael

    (California Institute of Technology)

Abstract

A many-body system in the vicinity of a first-order phase transition may get trapped in a local minimum of the free energy landscape. These so-called false-vacuum states may survive for exceedingly long times if the barrier for their decay is high enough. The rich phase diagram obtained in graphene multilayer devices presents a unique opportunity to explore transient superconductivity on top of a correlated false vacuum. Specifically, we consider superconductors which are terminated by an apparent first-order phase transition to a correlated phase with different symmetry. We propose that quenching across this transition leads to a non-equilibrium ephemeral superconductor, readily detectable using straightforward transport measurements. Moreover, the transient superconductor also generically enhances the false vacuum lifetime, potentially by orders of magnitude. In several scenarios, the complimentary effect takes place as well: superconductivity is temporarily emboldened in the false vacuum, albeit ultimately decaying. We demonstrate the applicability of these claims for different instances of superconductivity terminated by a first order transition in rhombohedral graphene. The obtained decay timescales position this class of materials as a promising playground to unambiguously realize and measure non-equilibrium superconductivity.

Suggested Citation

  • Gal Shavit & Stevan Nadj-Perge & Gil Refael, 2025. "Ephemeral superconductivity atop the false vacuum," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57227-5
    DOI: 10.1038/s41467-025-57227-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57227-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57227-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57227-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.