IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v530y2016i7591d10.1038_nature16522.html
   My bibliography  Save this article

Possible light-induced superconductivity in K3C60 at high temperature

Author

Listed:
  • M. Mitrano

    (Max Planck Institute for the Structure and Dynamics of Matter)

  • A. Cantaluppi

    (Max Planck Institute for the Structure and Dynamics of Matter
    The Hamburg Centre for Ultrafast Imaging)

  • D. Nicoletti

    (Max Planck Institute for the Structure and Dynamics of Matter
    The Hamburg Centre for Ultrafast Imaging)

  • S. Kaiser

    (Max Planck Institute for the Structure and Dynamics of Matter)

  • A. Perucchi

    (INSTM UdR Trieste-ST and Elettra–Sincrotrone Trieste S.C.p.A.)

  • S. Lupi

    (Università di Roma “Sapienza”)

  • P. Di Pietro

    (INSTM UdR Trieste-ST and Elettra–Sincrotrone Trieste S.C.p.A.)

  • D. Pontiroli

    (Università degli Studi di Parma)

  • M. Riccò

    (Università degli Studi di Parma)

  • S. R. Clark

    (Max Planck Institute for the Structure and Dynamics of Matter
    University of Bath, Claverton Down
    Oxford University, Clarendon Laboratory)

  • D. Jaksch

    (Oxford University, Clarendon Laboratory
    Centre for Quantum Technologies, National University of Singapore)

  • A. Cavalleri

    (Max Planck Institute for the Structure and Dynamics of Matter
    The Hamburg Centre for Ultrafast Imaging
    Oxford University, Clarendon Laboratory)

Abstract

By exciting high-temperature K3C60 with mid-infrared pulses, a large increase in carrier mobility is obtained, accompanied by the opening of a gap in the optical conductivity; these same signatures are observed at equilibrium when cooling K3C60 below the superconducting transition temperature of 20 kelvin, which could be an indication of light-induced high-temperature superconductivity.

Suggested Citation

  • M. Mitrano & A. Cantaluppi & D. Nicoletti & S. Kaiser & A. Perucchi & S. Lupi & P. Di Pietro & D. Pontiroli & M. Riccò & S. R. Clark & D. Jaksch & A. Cavalleri, 2016. "Possible light-induced superconductivity in K3C60 at high temperature," Nature, Nature, vol. 530(7591), pages 461-464, February.
  • Handle: RePEc:nat:nature:v:530:y:2016:i:7591:d:10.1038_nature16522
    DOI: 10.1038/nature16522
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature16522
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature16522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aaron H. Barajas-Aguilar & Jasen Zion & Ian Sequeira & Andrew Z. Barabas & Takashi Taniguchi & Kenji Watanabe & Eric B. Barrett & Thomas Scaffidi & Javier D. Sanchez-Yamagishi, 2024. "Electrically driven amplification of terahertz acoustic waves in graphene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Daniel Z. Haxell & Marco Coraiola & Deividas Sabonis & Manuel Hinderling & Sofieke C. Kate & Erik Cheah & Filip Krizek & Rüdiger Schott & Werner Wegscheider & Wolfgang Belzig & Juan Carlos Cuevas & Fa, 2023. "Microwave-induced conductance replicas in hybrid Josephson junctions without Floquet—Andreev states," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Jun Nishida & Samuel C. Johnson & Peter T. S. Chang & Dylan M. Wharton & Sven A. Dönges & Omar Khatib & Markus B. Raschke, 2022. "Ultrafast infrared nano-imaging of far-from-equilibrium carrier and vibrational dynamics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Matteo Lucchini & Fabio Medeghini & Yingxuan Wu & Federico Vismarra & Rocío Borrego-Varillas & Aurora Crego & Fabio Frassetto & Luca Poletto & Shunsuke A. Sato & Hannes Hübener & Umberto Giovannini & , 2022. "Controlling Floquet states on ultrashort time scales," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. T. P. H. Sidiropoulos & N. Palo & D. E. Rivas & A. Summers & S. Severino & M. Reduzzi & J. Biegert, 2023. "Enhanced optical conductivity and many-body effects in strongly-driven photo-excited semi-metallic graphite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Chenhang Xu & Cheng Jin & Zijing Chen & Qi Lu & Yun Cheng & Bo Zhang & Fengfeng Qi & Jiajun Chen & Xunqing Yin & Guohua Wang & Dao Xiang & Dong Qian, 2023. "Transient dynamics of the phase transition in VO2 revealed by mega-electron-volt ultrafast electron diffraction," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Christian J. Eckhardt & Sambuddha Chattopadhyay & Dante M. Kennes & Eugene A. Demler & Michael A. Sentef & Marios H. Michael, 2024. "Theory of resonantly enhanced photo-induced superconductivity," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Steven Gassner & Clara S. Weber & Martin Claassen, 2024. "Light-induced switching between singlet and triplet superconducting states," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Hongbin Lei & Jinping Yao & Jing Zhao & Hongqiang Xie & Fangbo Zhang & He Zhang & Ning Zhang & Guihua Li & Qian Zhang & Xiaowei Wang & Yan Yang & Luqi Yuan & Ya Cheng & Zengxiu Zhao, 2022. "Ultraviolet supercontinuum generation driven by ionic coherence in a strong laser field," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Guanghui Cheng & Meng-Hsien Lin & Hung-Ying Chen & Dongli Wang & Zheyan Wang & Wei Qin & Zhenyu Zhang & Changgan Zeng, 2024. "Reversible modulation of superconductivity in thin-film NbSe2 via plasmon coupling," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Yang Luo & Alberto Martin-Jimenez & Michele Pisarra & Fernando Martin & Manish Garg & Klaus Kern, 2023. "Imaging and controlling coherent phonon wave packets in single graphene nanoribbons," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. E. Wang & J. D. Adelinia & M. Chavez-Cervantes & T. Matsuyama & M. Fechner & M. Buzzi & G. Meier & A. Cavalleri, 2023. "Superconducting nonlinear transport in optically driven high-temperature K3C60," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    13. Peng Chen & Charles Paillard & Hong Jian Zhao & Jorge Íñiguez & Laurent Bellaiche, 2022. "Deterministic control of ferroelectric polarization by ultrafast laser pulses," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. H. M. Yoo & M. Korkusinski & D. Miravet & K. W. Baldwin & K. West & L. Pfeiffer & P. Hawrylak & R. C. Ashoori, 2023. "Time, momentum, and energy resolved pump-probe tunneling spectroscopy of two-dimensional electron systems," Nature Communications, Nature, vol. 14(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:530:y:2016:i:7591:d:10.1038_nature16522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.