IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v598y2021i7881d10.1038_s41586-021-03926-0.html
   My bibliography  Save this article

Superconductivity in rhombohedral trilayer graphene

Author

Listed:
  • Haoxin Zhou

    (University of California)

  • Tian Xie

    (University of California)

  • Takashi Taniguchi

    (National Institute for Materials Science)

  • Kenji Watanabe

    (National Institute for Materials Science)

  • Andrea F. Young

    (University of California)

Abstract

To access superconductivity via the electric field effect in a clean, two-dimensional device is a central goal of nanoelectronics. Recently, superconductivity has been realized in graphene moiré heterostructures1–4; however, many of these structures are not mechanically stable, and experiments show signatures of strong disorder. Here we report the observation of superconductivity—manifesting as low or vanishing resistivity at sub-kelvin temperatures—in crystalline rhombohedral trilayer graphene5,6, a structurally metastable carbon allotrope. Superconductivity occurs in two distinct gate-tuned regions (SC1 and SC2), and is deep in the clean limit defined by the ratio of mean free path and superconducting coherence length. Mapping of the normal state Fermi surfaces by quantum oscillations reveals that both superconductors emerge from an annular Fermi sea, and are proximal to an isospin-symmetry-breaking transition where the Fermi surface degeneracy changes7. SC1 emerges from a paramagnetic normal state, whereas SC2 emerges from a spin-polarized, valley-unpolarized half-metal17 and violates the Pauli limit for in-plane magnetic fields by at least one order of magnitude8,9. We discuss our results in view of several mechanisms, including conventional phonon-mediated pairing10,11, pairing due to fluctuations of the proximal isospin order12, and intrinsic instabilities of the annular Fermi liquid13,14. Our observation of superconductivity in a clean and structurally simple two-dimensional metal provides a model system to test competing theoretical models of superconductivity without the complication of modelling disorder, while enabling new classes of field-effect controlled electronic devices based on correlated electron phenomena and ballistic electron transport.

Suggested Citation

  • Haoxin Zhou & Tian Xie & Takashi Taniguchi & Kenji Watanabe & Andrea F. Young, 2021. "Superconductivity in rhombohedral trilayer graphene," Nature, Nature, vol. 598(7881), pages 434-438, October.
  • Handle: RePEc:nat:nature:v:598:y:2021:i:7881:d:10.1038_s41586-021-03926-0
    DOI: 10.1038/s41586-021-03926-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03926-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03926-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaozhou Zan & Xiangdong Guo & Aolin Deng & Zhiheng Huang & Le Liu & Fanfan Wu & Yalong Yuan & Jiaojiao Zhao & Yalin Peng & Lu Li & Yangkun Zhang & Xiuzhen Li & Jundong Zhu & Jingwei Dong & Dongxia Sh, 2024. "Electron/infrared-phonon coupling in ABC trilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    2. Wenqiang Zhou & Jing Ding & Jiannan Hua & Le Zhang & Kenji Watanabe & Takashi Taniguchi & Wei Zhu & Shuigang Xu, 2024. "Layer-polarized ferromagnetism in rhombohedral multilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. J. González & T. Stauber, 2023. "Ising superconductivity induced from spin-selective valley symmetry breaking in twisted trilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Giulia Serrano & Lorenzo Poggini & Giuseppe Cucinotta & Andrea Luigi Sorrentino & Niccolò Giaconi & Brunetto Cortigiani & Danilo Longo & Edwige Otero & Philippe Sainctavit & Andrea Caneschi & Matteo M, 2022. "Magnetic molecules as local sensors of topological hysteresis of superconductors," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Anna M. Seiler & Nils Jacobsen & Martin Statz & Noelia Fernandez & Francesca Falorsi & Kenji Watanabe & Takashi Taniguchi & Zhiyu Dong & Leonid S. Levitov & R. Thomas Weitz, 2024. "Probing the tunable multi-cone band structure in Bernal bilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Jonas B. Profe & Dante M. Kennes, 2022. "TU $$^2$$ 2 FRG: a scalable approach for truncated unity functional renormalization group in generic fermionic models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(3), pages 1-13, March.
    7. Shubhayu Chatterjee & Taige Wang & Erez Berg & Michael P. Zaletel, 2022. "Inter-valley coherent order and isospin fluctuation mediated superconductivity in rhombohedral trilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:598:y:2021:i:7881:d:10.1038_s41586-021-03926-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.