IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v613y2023i7943d10.1038_s41586-022-05446-x.html
   My bibliography  Save this article

Enhanced superconductivity in spin–orbit proximitized bilayer graphene

Author

Listed:
  • Yiran Zhang

    (California Institute of Technology
    California Institute of Technology
    California Institute of Technology)

  • Robert Polski

    (California Institute of Technology
    California Institute of Technology)

  • Alex Thomson

    (California Institute of Technology
    California Institute of Technology
    University of California)

  • Étienne Lantagne-Hurtubise

    (California Institute of Technology
    California Institute of Technology)

  • Cyprian Lewandowski

    (California Institute of Technology
    California Institute of Technology)

  • Haoxin Zhou

    (California Institute of Technology
    California Institute of Technology)

  • Kenji Watanabe

    (National Institute for Materials Science)

  • Takashi Taniguchi

    (National Institute for Materials Science)

  • Jason Alicea

    (California Institute of Technology
    California Institute of Technology)

  • Stevan Nadj-Perge

    (California Institute of Technology
    California Institute of Technology)

Abstract

In the presence of a large perpendicular electric field, Bernal-stacked bilayer graphene (BLG) features several broken-symmetry metallic phases1–3 as well as magnetic-field-induced superconductivity1. The superconducting state is quite fragile, however, appearing only in a narrow window of density and with a maximum critical temperature Tc ≈ 30 mK. Here we show that placing monolayer tungsten diselenide (WSe2) on BLG promotes Cooper pairing to an extraordinary degree: superconductivity appears at zero magnetic field, exhibits an order of magnitude enhancement in Tc and occurs over a density range that is wider by a factor of eight. By mapping quantum oscillations in BLG–WSe2 as a function of electric field and doping, we establish that superconductivity emerges throughout a region for which the normal state is polarized, with two out of four spin-valley flavours predominantly populated. In-plane magnetic field measurements further reveal that superconductivity in BLG–WSe2 can exhibit striking dependence of the critical field on doping, with the Chandrasekhar–Clogston (Pauli) limit roughly obeyed on one end of the superconducting dome, yet sharply violated on the other. Moreover, the superconductivity arises only for perpendicular electric fields that push BLG hole wavefunctions towards WSe2, indicating that proximity-induced (Ising) spin–orbit coupling plays a key role in stabilizing the pairing. Our results pave the way for engineering robust, highly tunable and ultra-clean graphene-based superconductors.

Suggested Citation

  • Yiran Zhang & Robert Polski & Alex Thomson & Étienne Lantagne-Hurtubise & Cyprian Lewandowski & Haoxin Zhou & Kenji Watanabe & Takashi Taniguchi & Jason Alicea & Stevan Nadj-Perge, 2023. "Enhanced superconductivity in spin–orbit proximitized bilayer graphene," Nature, Nature, vol. 613(7943), pages 268-273, January.
  • Handle: RePEc:nat:nature:v:613:y:2023:i:7943:d:10.1038_s41586-022-05446-x
    DOI: 10.1038/s41586-022-05446-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05446-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05446-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaozhou Zan & Xiangdong Guo & Aolin Deng & Zhiheng Huang & Le Liu & Fanfan Wu & Yalong Yuan & Jiaojiao Zhao & Yalin Peng & Lu Li & Yangkun Zhang & Xiuzhen Li & Jundong Zhu & Jingwei Dong & Dongxia Sh, 2024. "Electron/infrared-phonon coupling in ABC trilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    2. Qing Rao & Wun-Hao Kang & Hongxia Xue & Ziqing Ye & Xuemeng Feng & Kenji Watanabe & Takashi Taniguchi & Ning Wang & Ming-Hao Liu & Dong-Keun Ki, 2023. "Ballistic transport spectroscopy of spin-orbit-coupled bands in monolayer graphene on WSe2," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Shuichi Iwakiri & Alexandra Mestre-Torà & Elías Portolés & Marieke Visscher & Marta Perego & Giulia Zheng & Takashi Taniguchi & Kenji Watanabe & Manfred Sigrist & Thomas Ihn & Klaus Ensslin, 2024. "Tunable quantum interferometer for correlated moiré electrons," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:613:y:2023:i:7943:d:10.1038_s41586-022-05446-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.