IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48166-8.html
   My bibliography  Save this article

Observation of dichotomic field-tunable electronic structure in twisted monolayer-bilayer graphene

Author

Listed:
  • Hongyun Zhang

    (Tsinghua University)

  • Qian Li

    (Tsinghua University)

  • Youngju Park

    (University of Seoul)

  • Yujin Jia

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Wanying Chen

    (Tsinghua University)

  • Jiaheng Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Qinxin Liu

    (Tsinghua University)

  • Changhua Bao

    (Tsinghua University)

  • Nicolas Leconte

    (University of Seoul)

  • Shaohua Zhou

    (Tsinghua University)

  • Yuan Wang

    (Tsinghua University)

  • Kenji Watanabe

    (National Institute for Materials Science)

  • Takashi Taniguchi

    (National Institute for Materials Science)

  • Jose Avila

    (L’Orme des Merisiers)

  • Pavel Dudin

    (L’Orme des Merisiers)

  • Pu Yu

    (Tsinghua University
    Frontier Science Center for Quantum Information)

  • Hongming Weng

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

  • Wenhui Duan

    (Tsinghua University
    Frontier Science Center for Quantum Information
    Tsinghua University)

  • Quansheng Wu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jeil Jung

    (University of Seoul
    University of Seoul)

  • Shuyun Zhou

    (Tsinghua University
    Frontier Science Center for Quantum Information)

Abstract

Twisted bilayer graphene (tBLG) provides a fascinating platform for engineering flat bands and inducing correlated phenomena. By designing the stacking architecture of graphene layers, twisted multilayer graphene can exhibit different symmetries with rich tunability. For example, in twisted monolayer-bilayer graphene (tMBG) which breaks the C2z symmetry, transport measurements reveal an asymmetric phase diagram under an out-of-plane electric field, exhibiting correlated insulating state and ferromagnetic state respectively when reversing the field direction. Revealing how the electronic structure evolves with electric field is critical for providing a better understanding of such asymmetric field-tunable properties. Here we report the experimental observation of field-tunable dichotomic electronic structure of tMBG by nanospot angle-resolved photoemission spectroscopy (NanoARPES) with operando gating. Interestingly, selective enhancement of the relative spectral weight contributions from monolayer and bilayer graphene is observed when switching the polarity of the bias voltage. Combining experimental results with theoretical calculations, the origin of such field-tunable electronic structure, resembling either tBLG or twisted double-bilayer graphene (tDBG), is attributed to the selectively enhanced contribution from different stacking graphene layers with a strong electron-hole asymmetry. Our work provides electronic structure insights for understanding the rich field-tunable physics of tMBG.

Suggested Citation

  • Hongyun Zhang & Qian Li & Youngju Park & Yujin Jia & Wanying Chen & Jiaheng Li & Qinxin Liu & Changhua Bao & Nicolas Leconte & Shaohua Zhou & Yuan Wang & Kenji Watanabe & Takashi Taniguchi & Jose Avil, 2024. "Observation of dichotomic field-tunable electronic structure in twisted monolayer-bilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48166-8
    DOI: 10.1038/s41467-024-48166-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48166-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48166-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaomeng Liu & Zeyu Hao & Eslam Khalaf & Jong Yeon Lee & Yuval Ronen & Hyobin Yoo & Danial Haei Najafabadi & Kenji Watanabe & Takashi Taniguchi & Ashvin Vishwanath & Philip Kim, 2020. "Tunable spin-polarized correlated states in twisted double bilayer graphene," Nature, Nature, vol. 583(7815), pages 221-225, July.
    2. Si-yu Li & Zhengwen Wang & Yucheng Xue & Yingbo Wang & Shihao Zhang & Jianpeng Liu & Zheng Zhu & Kenji Watanabe & Takashi Taniguchi & Hong-jun Gao & Yuhang Jiang & Jinhai Mao, 2022. "Imaging topological and correlated insulating states in twisted monolayer-bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. H. Polshyn & J. Zhu & M. A. Kumar & Y. Zhang & F. Yang & C. L. Tschirhart & M. Serlin & K. Watanabe & T. Taniguchi & A. H. MacDonald & A. F. Young, 2020. "Electrical switching of magnetic order in an orbital Chern insulator," Nature, Nature, vol. 588(7836), pages 66-70, December.
    4. Minhao He & Ya-Hui Zhang & Yuhao Li & Zaiyao Fei & Kenji Watanabe & Takashi Taniguchi & Xiaodong Xu & Matthew Yankowitz, 2021. "Competing correlated states and abundant orbital magnetism in twisted monolayer-bilayer graphene," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Guorui Chen & Aaron L. Sharpe & Patrick Gallagher & Ilan T. Rosen & Eli J. Fox & Lili Jiang & Bosai Lyu & Hongyuan Li & Kenji Watanabe & Takashi Taniguchi & Jeil Jung & Zhiwen Shi & David Goldhaber-Go, 2019. "Signatures of tunable superconductivity in a trilayer graphene moiré superlattice," Nature, Nature, vol. 572(7768), pages 215-219, August.
    6. Canxun Zhang & Tiancong Zhu & Tomohiro Soejima & Salman Kahn & Kenji Watanabe & Takashi Taniguchi & Alex Zettl & Feng Wang & Michael P. Zaletel & Michael F. Crommie, 2023. "Local spectroscopy of a gate-switchable moiré quantum anomalous Hall insulator," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Yuan Cao & Valla Fatemi & Shiang Fang & Kenji Watanabe & Takashi Taniguchi & Efthimios Kaxiras & Pablo Jarillo-Herrero, 2018. "Unconventional superconductivity in magic-angle graphene superlattices," Nature, Nature, vol. 556(7699), pages 43-50, April.
    8. Paul V. Nguyen & Natalie C. Teutsch & Nathan P. Wilson & Joshua Kahn & Xue Xia & Abigail J. Graham & Viktor Kandyba & Alessio Giampietri & Alexei Barinov & Gabriel C. Constantinescu & Nelson Yeung & N, 2019. "Visualizing electrostatic gating effects in two-dimensional heterostructures," Nature, Nature, vol. 572(7768), pages 220-223, August.
    9. Yuan Cao & Daniel Rodan-Legrain & Oriol Rubies-Bigorda & Jeong Min Park & Kenji Watanabe & Takashi Taniguchi & Pablo Jarillo-Herrero, 2020. "Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene," Nature, Nature, vol. 583(7815), pages 215-220, July.
    10. Yuan Cao & Daniel Rodan-Legrain & Oriol Rubies-Bigorda & Jeong Min Park & Kenji Watanabe & Takashi Taniguchi & Pablo Jarillo-Herrero, 2020. "Author Correction: Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene," Nature, Nature, vol. 583(7816), pages 27-27, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pratap Chandra Adak & Subhajit Sinha & Debasmita Giri & Dibya Kanti Mukherjee & Chandan & L. D. Varma Sangani & Surat Layek & Ayshi Mukherjee & Kenji Watanabe & Takashi Taniguchi & H. A. Fertig & Arij, 2022. "Perpendicular electric field drives Chern transitions and layer polarization changes in Hofstadter bands," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Le Liu & Shihao Zhang & Yanbang Chu & Cheng Shen & Yuan Huang & Yalong Yuan & Jinpeng Tian & Jian Tang & Yiru Ji & Rong Yang & Kenji Watanabe & Takashi Taniguchi & Dongxia Shi & Jianpeng Liu & Wei Yan, 2022. "Isospin competitions and valley polarized correlated insulators in twisted double bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Saisab Bhowmik & Bhaskar Ghawri & Youngju Park & Dongkyu Lee & Suvronil Datta & Radhika Soni & K. Watanabe & T. Taniguchi & Arindam Ghosh & Jeil Jung & U. Chandni, 2023. "Spin-orbit coupling-enhanced valley ordering of malleable bands in twisted bilayer graphene on WSe2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Canxun Zhang & Tiancong Zhu & Tomohiro Soejima & Salman Kahn & Kenji Watanabe & Takashi Taniguchi & Alex Zettl & Feng Wang & Michael P. Zaletel & Michael F. Crommie, 2023. "Local spectroscopy of a gate-switchable moiré quantum anomalous Hall insulator," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Manabendra Kuiri & Christopher Coleman & Zhenxiang Gao & Aswin Vishnuradhan & Kenji Watanabe & Takashi Taniguchi & Jihang Zhu & Allan H. MacDonald & Joshua Folk, 2022. "Spontaneous time-reversal symmetry breaking in twisted double bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    6. Yufei Sun & Yujia Wang & Enze Wang & Bolun Wang & Hengyi Zhao & Yongpan Zeng & Qinghua Zhang & Yonghuang Wu & Lin Gu & Xiaoyan Li & Kai Liu, 2022. "Determining the interlayer shearing in twisted bilayer MoS2 by nanoindentation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. J. Díez-Mérida & A. Díez-Carlón & S. Y. Yang & Y.-M. Xie & X.-J. Gao & J. Senior & K. Watanabe & T. Taniguchi & X. Lu & A. P. Higginbotham & K. T. Law & Dmitri K. Efetov, 2023. "Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Trithep Devakul & Valentin Crépel & Yang Zhang & Liang Fu, 2021. "Magic in twisted transition metal dichalcogenide bilayers," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Wenqiang Zhou & Jing Ding & Jiannan Hua & Le Zhang & Kenji Watanabe & Takashi Taniguchi & Wei Zhu & Shuigang Xu, 2024. "Layer-polarized ferromagnetism in rhombohedral multilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Dorri Halbertal & Simon Turkel & Christopher J. Ciccarino & Jonas B. Profe & Nathan Finney & Valerie Hsieh & Kenji Watanabe & Takashi Taniguchi & James Hone & Cory Dean & Prineha Narang & Abhay N. Pas, 2022. "Unconventional non-local relaxation dynamics in a twisted trilayer graphene moiré superlattice," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Hanyu Wang & Wei Xu & Zeyong Wei & Yiyuan Wang & Zhanshan Wang & Xinbin Cheng & Qinghua Guo & Jinhui Shi & Zhihong Zhu & Biao Yang, 2024. "Twisted photonic Weyl meta-crystals and aperiodic Fermi arc scattering," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Junxiong Hu & Junyou Tan & Mohammed M. Al Ezzi & Udvas Chattopadhyay & Jian Gou & Yuntian Zheng & Zihao Wang & Jiayu Chen & Reshmi Thottathil & Jiangbo Luo & Kenji Watanabe & Takashi Taniguchi & Andre, 2023. "Controlled alignment of supermoiré lattice in double-aligned graphene heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Martin Claassen & Lede Xian & Dante M. Kennes & Angel Rubio, 2022. "Ultra-strong spin–orbit coupling and topological moiré engineering in twisted ZrS2 bilayers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Alejandro Ruiz & Brandon Gunn & Yi Lu & Kalyan Sasmal & Camilla M. Moir & Rourav Basak & Hai Huang & Jun-Sik Lee & Fanny Rodolakis & Timothy J. Boyle & Morgan Walker & Yu He & Santiago Blanco-Canosa &, 2022. "Stabilization of three-dimensional charge order through interplanar orbital hybridization in PrxY1−xBa2Cu3O6+δ," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    15. Avior Almoalem & Irena Feldman & Ilay Mangel & Michael Shlafman & Yuval E. Yaish & Mark H. Fischer & Michael Moshe & Jonathan Ruhman & Amit Kanigel, 2024. "The observation of π-shifts in the Little-Parks effect in 4Hb-TaS2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Yu-Bo Liu & Jing Zhou & Congjun Wu & Fan Yang, 2023. "Charge-4e superconductivity and chiral metal in 45°-twisted bilayer cuprates and related bilayers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Xiaozhou Zan & Xiangdong Guo & Aolin Deng & Zhiheng Huang & Le Liu & Fanfan Wu & Yalong Yuan & Jiaojiao Zhao & Yalin Peng & Lu Li & Yangkun Zhang & Xiuzhen Li & Jundong Zhu & Jingwei Dong & Dongxia Sh, 2024. "Electron/infrared-phonon coupling in ABC trilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    18. Si-yu Li & Zhengwen Wang & Yucheng Xue & Yingbo Wang & Shihao Zhang & Jianpeng Liu & Zheng Zhu & Kenji Watanabe & Takashi Taniguchi & Hong-jun Gao & Yuhang Jiang & Jinhai Mao, 2022. "Imaging topological and correlated insulating states in twisted monolayer-bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    19. Eslam Khalaf & Ashvin Vishwanath, 2022. "Baby skyrmions in Chern ferromagnets and topological mechanism for spin-polaron formation in twisted bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. J. González & T. Stauber, 2023. "Ising superconductivity induced from spin-selective valley symmetry breaking in twisted trilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48166-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.