IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v574y2019i7780d10.1038_s41586-019-1695-0.html
   My bibliography  Save this article

Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene

Author

Listed:
  • Xiaobo Lu

    (The Barcelona Institute of Science and Technology)

  • Petr Stepanov

    (The Barcelona Institute of Science and Technology)

  • Wei Yang

    (The Barcelona Institute of Science and Technology)

  • Ming Xie

    (University of Texas at Austin)

  • Mohammed Ali Aamir

    (The Barcelona Institute of Science and Technology)

  • Ipsita Das

    (The Barcelona Institute of Science and Technology)

  • Carles Urgell

    (The Barcelona Institute of Science and Technology)

  • Kenji Watanabe

    (National Institute for Materials Science)

  • Takashi Taniguchi

    (National Institute for Materials Science)

  • Guangyu Zhang

    (Chinese Academy of Sciences)

  • Adrian Bachtold

    (The Barcelona Institute of Science and Technology)

  • Allan H. MacDonald

    (University of Texas at Austin)

  • Dmitri K. Efetov

    (The Barcelona Institute of Science and Technology)

Abstract

Superconductivity can occur under conditions approaching broken-symmetry parent states1. In bilayer graphene, the twisting of one layer with respect to the other at ‘magic’ twist angles of around 1 degree leads to the emergence of ultra-flat moiré superlattice minibands. Such bands are a rich and highly tunable source of strong-correlation physics2–5, notably superconductivity, which emerges close to interaction-induced insulating states6,7. Here we report the fabrication of magic-angle twisted bilayer graphene devices with highly uniform twist angles. The reduction in twist-angle disorder reveals the presence of insulating states at all integer occupancies of the fourfold spin–valley degenerate flat conduction and valence bands—that is, at moiré band filling factors ν = 0, ±1, ±2, ±3. At ν ≈ −2, superconductivity is observed below critical temperatures of up to 3 kelvin. We also observe three new superconducting domes at much lower temperatures, close to the ν = 0 and ν = ±1 insulating states. Notably, at ν = ± 1 we find states with non-zero Chern numbers. For ν = −1 the insulating state exhibits a sharp hysteretic resistance enhancement when a perpendicular magnetic field greater than 3.6 tesla is applied, which is consistent with a field-driven phase transition. Our study shows that broken-symmetry states, interaction-driven insulators, orbital magnets, states with non-zero Chern numbers and superconducting domes occur frequently across a wide range of moiré flat band fillings, including close to charge neutrality. This study provides a more detailed view of the phenomenology of magic-angle twisted bilayer graphene, adding to our evolving understanding of its emergent properties.

Suggested Citation

  • Xiaobo Lu & Petr Stepanov & Wei Yang & Ming Xie & Mohammed Ali Aamir & Ipsita Das & Carles Urgell & Kenji Watanabe & Takashi Taniguchi & Guangyu Zhang & Adrian Bachtold & Allan H. MacDonald & Dmitri K, 2019. "Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene," Nature, Nature, vol. 574(7780), pages 653-657, October.
  • Handle: RePEc:nat:nature:v:574:y:2019:i:7780:d:10.1038_s41586-019-1695-0
    DOI: 10.1038/s41586-019-1695-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1695-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1695-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Díez-Mérida & A. Díez-Carlón & S. Y. Yang & Y.-M. Xie & X.-J. Gao & J. Senior & K. Watanabe & T. Taniguchi & X. Lu & A. P. Higginbotham & K. T. Law & Dmitri K. Efetov, 2023. "Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Maine Christos & Subir Sachdev & Mathias S. Scheurer, 2023. "Nodal band-off-diagonal superconductivity in twisted graphene superlattices," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Saisab Bhowmik & Bhaskar Ghawri & Youngju Park & Dongkyu Lee & Suvronil Datta & Radhika Soni & K. Watanabe & T. Taniguchi & Arindam Ghosh & Jeil Jung & U. Chandni, 2023. "Spin-orbit coupling-enhanced valley ordering of malleable bands in twisted bilayer graphene on WSe2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Wenqiang Zhou & Jing Ding & Jiannan Hua & Le Zhang & Kenji Watanabe & Takashi Taniguchi & Wei Zhu & Shuigang Xu, 2024. "Layer-polarized ferromagnetism in rhombohedral multilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Giacomo Mazza & Marco Gandolfi & Massimo Capone & Francesco Banfi & Claudio Giannetti, 2021. "Thermal dynamics and electronic temperature waves in layered correlated materials," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Canxun Zhang & Tiancong Zhu & Tomohiro Soejima & Salman Kahn & Kenji Watanabe & Takashi Taniguchi & Alex Zettl & Feng Wang & Michael P. Zaletel & Michael F. Crommie, 2023. "Local spectroscopy of a gate-switchable moiré quantum anomalous Hall insulator," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Shuichi Iwakiri & Alexandra Mestre-Torà & Elías Portolés & Marieke Visscher & Marta Perego & Giulia Zheng & Takashi Taniguchi & Kenji Watanabe & Manfred Sigrist & Thomas Ihn & Klaus Ensslin, 2024. "Tunable quantum interferometer for correlated moiré electrons," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Yu-Bo Liu & Jing Zhou & Congjun Wu & Fan Yang, 2023. "Charge-4e superconductivity and chiral metal in 45°-twisted bilayer cuprates and related bilayers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Pratap Chandra Adak & Subhajit Sinha & Debasmita Giri & Dibya Kanti Mukherjee & Chandan & L. D. Varma Sangani & Surat Layek & Ayshi Mukherjee & Kenji Watanabe & Takashi Taniguchi & H. A. Fertig & Arij, 2022. "Perpendicular electric field drives Chern transitions and layer polarization changes in Hofstadter bands," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Jiachen Yu & Benjamin A. Foutty & Yves H. Kwan & Mark E. Barber & Kenji Watanabe & Takashi Taniguchi & Zhi-Xun Shen & Siddharth A. Parameswaran & Benjamin E. Feldman, 2023. "Spin skyrmion gaps as signatures of strong-coupling insulators in magic-angle twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Anushree Datta & M. J. Calderón & A. Camjayi & E. Bascones, 2023. "Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Martin Claassen & Lede Xian & Dante M. Kennes & Angel Rubio, 2022. "Ultra-strong spin–orbit coupling and topological moiré engineering in twisted ZrS2 bilayers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Trithep Devakul & Valentin Crépel & Yang Zhang & Liang Fu, 2021. "Magic in twisted transition metal dichalcogenide bilayers," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    14. Le Liu & Shihao Zhang & Yanbang Chu & Cheng Shen & Yuan Huang & Yalong Yuan & Jinpeng Tian & Jian Tang & Yiru Ji & Rong Yang & Kenji Watanabe & Takashi Taniguchi & Dongxia Shi & Jianpeng Liu & Wei Yan, 2022. "Isospin competitions and valley polarized correlated insulators in twisted double bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    15. Eslam Khalaf & Ashvin Vishwanath, 2022. "Baby skyrmions in Chern ferromagnets and topological mechanism for spin-polaron formation in twisted bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. J. González & T. Stauber, 2023. "Ising superconductivity induced from spin-selective valley symmetry breaking in twisted trilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    17. Rustem Khasanov & Bin-Bin Ruan & Yun-Qing Shi & Gen-Fu Chen & Hubertus Luetkens & Zhi-An Ren & Zurab Guguchia, 2024. "Tuning of the flat band and its impact on superconductivity in Mo5Si3−xPx," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    18. Junxiong Hu & Junyou Tan & Mohammed M. Al Ezzi & Udvas Chattopadhyay & Jian Gou & Yuntian Zheng & Zihao Wang & Jiayu Chen & Reshmi Thottathil & Jiangbo Luo & Kenji Watanabe & Takashi Taniguchi & Andre, 2023. "Controlled alignment of supermoiré lattice in double-aligned graphene heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Xingdan Sun & Shihao Zhang & Zhiyong Liu & Honglei Zhu & Jinqiang Huang & Kai Yuan & Zhenhua Wang & Kenji Watanabe & Takashi Taniguchi & Xiaoxi Li & Mengjian Zhu & Jinhai Mao & Teng Yang & Jun Kang & , 2021. "Correlated states in doubly-aligned hBN/graphene/hBN heterostructures," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    20. Shubhayu Chatterjee & Taige Wang & Erez Berg & Michael P. Zaletel, 2022. "Inter-valley coherent order and isospin fluctuation mediated superconductivity in rhombohedral trilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    21. Si-yu Li & Zhengwen Wang & Yucheng Xue & Yingbo Wang & Shihao Zhang & Jianpeng Liu & Zheng Zhu & Kenji Watanabe & Takashi Taniguchi & Hong-jun Gao & Yuhang Jiang & Jinhai Mao, 2022. "Imaging topological and correlated insulating states in twisted monolayer-bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:574:y:2019:i:7780:d:10.1038_s41586-019-1695-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.