IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52620-y.html
   My bibliography  Save this article

Potent pollen gene regulation by DNA glycosylases in maize

Author

Listed:
  • Yibing Zeng

    (University of Georgia)

  • Julian Somers

    (University of Georgia)

  • Harrison S. Bell

    (Oregon State University)

  • Zuzana Vejlupkova

    (Oregon State University)

  • R. Kelly Dawe

    (University of Georgia
    University of Georgia)

  • John E. Fowler

    (Oregon State University)

  • Brad Nelms

    (University of Georgia)

  • Jonathan I. Gent

    (University of Georgia)

Abstract

Although DNA methylation primarily represses TEs, it also represses select genes that are methylated in plant body tissues but demethylated by DNA glycosylases (DNGs) in endosperm or pollen. Either one of two DNGs, MATERNAL DEREPRESSION OF R1 (MDR1) or DNG102, is essential for pollen viability in maize. Using single-pollen mRNA sequencing on pollen-segregating mutations in both genes, we identify 58 candidate DNG target genes that account for 11.1% of the wild-type transcriptome but are silent or barely detectable in other tissues. They are unusual in their tendency to lack introns but even more so in their TE-like methylation (teM) in coding DNA. The majority have predicted functions in cell wall modification, and they likely support the rapid tip growth characteristic of pollen tubes. These results suggest a critical role for DNA methylation and demethylation in regulating maize genes with the potential for extremely high expression in pollen but constitutive silencing elsewhere.

Suggested Citation

  • Yibing Zeng & Julian Somers & Harrison S. Bell & Zuzana Vejlupkova & R. Kelly Dawe & John E. Fowler & Brad Nelms & Jonathan I. Gent, 2024. "Potent pollen gene regulation by DNA glycosylases in maize," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52620-y
    DOI: 10.1038/s41467-024-52620-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52620-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52620-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yinping Jiao & Paul Peluso & Jinghua Shi & Tiffany Liang & Michelle C. Stitzer & Bo Wang & Michael S. Campbell & Joshua C. Stein & Xuehong Wei & Chen-Shan Chin & Katherine Guill & Michael Regulski & S, 2017. "Improved maize reference genome with single-molecule technologies," Nature, Nature, vol. 546(7659), pages 524-527, June.
    2. Robert J. Schmitz & Matthew D. Schultz & Mark A. Urich & Joseph R. Nery & Mattia Pelizzola & Ondrej Libiger & Andrew Alix & Richard B. McCosh & Huaming Chen & Nicholas J. Schork & Joseph R. Ecker, 2013. "Patterns of population epigenomic diversity," Nature, Nature, vol. 495(7440), pages 193-198, March.
    3. Souraya Khouider & Filipe Borges & Chantal LeBlanc & Alexander Ungru & Arp Schnittger & Robert Martienssen & Vincent Colot & Daniel Bouyer, 2021. "Male fertility in Arabidopsis requires active DNA demethylation of genes that control pollen tube function," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhibin Chen & Zhaogui Zhang & Huairen Zhang & Kai Li & Darun Cai & Li Zhao & Juan Liu & Huabang Chen, 2022. "A pair of non-Mendelian genes at the Ga2 locus confer unilateral cross-incompatibility in maize," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Lei Li & Huaihao Yang & Yi Zhao & Qianqian Hu & Xiaotuo Zhang & Ting Jiang & Hua Jiang & Binglian Zheng, 2024. "ARID1 is required to regulate and reinforce H3K9me2 in sperm cells in Arabidopsis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Yuxin Fu & Wenxin Xiao & Lang Tian & Liangxing Guo & Guangjin Ma & Chen Ji & Yongcai Huang & Haihai Wang & Xingguo Wu & Tao Yang & Jiechen Wang & Jirui Wang & Yongrui Wu & Wenqin Wang, 2023. "Spatial transcriptomics uncover sucrose post-phloem transport during maize kernel development," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Jie Liu & Xuehua Zhong, 2024. "Epiallelic variation of non-coding RNA genes and their phenotypic consequences," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Feng Tong & Teng Wang & Na L. Gao & Ziying Liu & Kuiqing Cui & Yiqian Duan & Sicheng Wu & Yuhong Luo & Zhipeng Li & Chengjian Yang & Yixue Xu & Bo Lin & Liguo Yang & Alfredo Pauciullo & Deshun Shi & G, 2022. "The microbiome of the buffalo digestive tract," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Minghui Kang & Haolin Wu & Huanhuan Liu & Wenyu Liu & Mingjia Zhu & Yu Han & Wei Liu & Chunlin Chen & Yan Song & Luna Tan & Kangqun Yin & Yusen Zhao & Zhen Yan & Shangling Lou & Yanjun Zan & Jianquan , 2023. "The pan-genome and local adaptation of Arabidopsis thaliana," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Yixue Bao & Qing Zhang & Jiangfeng Huang & Shengcheng Zhang & Wei Yao & Zehuai Yu & Zuhu Deng & Jiaxin Yu & Weilong Kong & Xikai Yu & Shan Lu & Yibin Wang & Ru Li & Yuhan Song & Chengwu Zou & Yuzhi Xu, 2024. "A chromosomal-scale genome assembly of modern cultivated hybrid sugarcane provides insights into origination and evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Gabriel E. Rech & Santiago Radío & Sara Guirao-Rico & Laura Aguilera & Vivien Horvath & Llewellyn Green & Hannah Lindstadt & Véronique Jamilloux & Hadi Quesneville & Josefa González, 2022. "Population-scale long-read sequencing uncovers transposable elements associated with gene expression variation and adaptive signatures in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Jessen V. Bredeson & Jessica B. Lyons & Ibukun O. Oniyinde & Nneka R. Okereke & Olufisayo Kolade & Ikenna Nnabue & Christian O. Nwadili & Eva Hřibová & Matthew Parker & Jeremiah Nwogha & Shengqiang Sh, 2022. "Chromosome evolution and the genetic basis of agronomically important traits in greater yam," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Tamer Aldwairi & David J. Chevalier & Andy D. Perkins, 2021. "Exploring the Effect of Climate Factors on SNPs within FHA Domain Genes in Eurasian Arabidopsis Ecotypes," Agriculture, MDPI, vol. 11(2), pages 1-10, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52620-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.